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ABSTRACT

Complex systems modeled as networks, has emerged as an exciting field of study

in the last decade. This is primarily due to the fact that our day to day lives are

deeply intertwined with “hopelessly” complex systems. Modern communication

infrastructure, which connects any two people in seconds materializes due to co-

operation of billions of devices such as routers, cell phones and computers. Social

media exists due to interaction of billions of entities such as people, organisations

etc. which leads to spectacular phenomenon such as information cascade. Even our

inherent capability to comprehend society around us requires seamless interactions

between billions of neurons in our brain. Since networks lie at the center of social,

technological and biological systems, it is important to come up with mathematical

description of the structure, which may lead to optimal control of the underlying

processes.

Resilience of a complex network relates to how well some of its properties are

retained under attacks. Robustness has been historically studied from the perspec-

tive of node property of degree. This translates to how essential connectivity in

the network can be disrupted by random and targeted node failures. Understanding

robustness is crucial in tackling scenarios such as the catastrophic 2003 blackout

in America, Canada as well as 2008 global financial meltdown. However existing

works do not shed light on how other key properties are affected such as centrality

due to random failures.

Centrality resilience is more difficult to detect than connectivity resilience. When

one part of a network cannot communicate with the rest of the system, it is easy to

infer that the cause is due to disconnectivity. Attack on centrality, however, may not

disconnect the network, but result in longer distances when traversing the network.
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The increased length of the distances, is due to the change in the ranking of the high

centrality vertices which may not be immediately apparent until the centralities of

the system are recomputed. This may potentially lead to delays in transport network

or high latency in communication resulting in economic losses.

In this thesis we show that path-based centralities form dense clusters or “rich

clubs“ in certain networks, which manifest in the inner cores of a network. We

demonstrate that stability of high central nodes in the network is related to these

substructures. We empirically and theoretically show that “rich clubs“ exists, if

the core-periphery structure of the network is such that each shell is an expander

graph, and their density decreases from inner to outer shells. We extend the concept

of a single rich club to that of “scattered rich clubs“ and explain how they connect to

centrality resilience. We subsequently extend our analysis to time-varying networks

and develop approaches to predict high central nodes based on the stability of the

core-periphery structures. We finally show that k-core structures can be useful

is developing novel network representation learning algorithms which is effective

in various downstream prediction tasks.

Keywords: core periphery structure, centrality resilience, centrality rich club, scat-

tered rich club, network representation learning.
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Chapter 1

Introduction

1.1 Preamble

Study of networks lies at the heart of understanding complex structures. These structures

can be from various domains ranging from social, technological and biological systems. In

spite of the diversity, studying these systems under the common framework of networks,

has yielded fruitful insights. As an example, friendship or professional ties are abstracted

as links, to form a network of social relations. Organizations such as LinkedIn, Facebook,

Twitter etc. have invested considerable resources studying these networks, as well as under-

lying processes to discern individual or group behaviour. The communication infrastructure

comprises billions of interconnected devices which are rigorously studied through projects

such as caida or dimes [1, 157], to understand possible vulnerabilities. Mysteries of cogni-

tion and human reasoning are explored, by mapping connectivity patterns generated by bil-

lions of neurons in the human brain. Considering the universal applicability of networks in

interdisciplinary domains, network science has emerged as an exciting field of exploration.

One of the key sub-problems in network science research is resilience. A resilient or robust

system can carry out its essential functions in spite of a small fraction of component fail-

ures. For instance, a communication infrastructure such as the Internet functions reliably

even when at any point in time, several routers may be malfunctioning. Similarly, metabolic

1



2 Chapter 1 Introduction

networks of living cells functions without hindrance, even when there are missed reactions.

Understanding origins of this remarkable resilience in natural systems has been a topic of

comprehensive exploration in the last decade. One of the seminal works in these lines by

Barabasi et. al. [6] show that real world networks are immune to random node failures.

However, they have low tolerance toward targeted attacks of high degree nodes. Hence real

world networks are prone to be dissolved readily into disjoint components when an adver-

sary launches targeted attacks. The origin of this property is rooted in the degree distribu-

tion of real world networks, which has been shown to follow a power law behaviour. Hence

majority of nodes have small number of neighbors while a small proportion of nodes domi-

nate the degree distribution. This inherently implies that random failure of components will

not affect the network adversely, while targeted attacks can critically damage the system.

Another intrinsic vulnerability of networks lies in situations of cascading failures. In such

cases, failure at one or few nodes distributes the load to their immediate neighbors. On

exceeding capacity, this imbalance further escalates to the local neighborhood. Cascad-

ing failures have been observed in electrical transmission networks, with one of the most

prominent examples being the 2003 blackout in Northeast United States and Canada which

affected 55 million people1. The 2009-2011 financial crisis is also an instance of cascading

failure which ended up paralyzing the world economy, leaving behind substantial financial

turmoil2. Automatic detection of focal points of cascading failure is an ongoing research

direction with diverse applications ranging from infrastructure, economic to healthcare sys-

tems. An interesting application lies in cancer research where inducing sequence of failures

in our cells may eventually eliminate malignant tissue [11]. These strategies are also appli-

cable in criminology toward crippling money laundering networks [11].

Vulnerability of networks has been mostly studied from the perspective of how network ro-

bustness changes when local neighborhood varies. Apart from degree, other key node prop-

erties such as ‘centrality’ have not been explored rigorously in the pursuit of understanding

resilience. Centrality resilience relates to how much the rankings of the top-k central nodes

in the network are perturbed under random or targeted removal of edges with the additional

constraint that any such link removal does not disconnect the network. In case of traditional

resilience, attack strategies will fundamentally alter the structure of the network. However

1en.wikipedia.org/wiki/Northeast_black out_of_2003
2en.wikipedia.org/wiki/Global_financial_crisis_in_September_2008
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constrained edge removal will only increase the distance between multiple pairs of nodes in

the graph. Hence efficient operational capability of a network can be disturbed. As an ex-

ample in a transportation network if centrality ranking is not robust, small amount of edge

removal will impact average distance between two nodes, which may lead to delays, leading

to economic losses. Therefore, centrality resilience is a very powerful tool for insidiously

disrupting the functioning of a system, without a drastic change to its structure. Since

it is extremely expensive to periodically recompute centralities of the entire network and

validate stability of rankings, a natural question that arises is that how can we utilise ‘cheap-

to-compute’ structural properties of the network to ascertain the centrality resilience.

Resilience is often associated with a network substructure commonly known as rich club.

Rich club emerges in a network when multiple hubs are interconnected among them-

selves. Most of the existing works have characterised richness of nodes from the per-

spective of node degree. However, other salient properties such as centrality have not been

explored. Rich clubs are also associated with the core-periphery structure in networks.

Core-periphery organization in networks can be extracted using k-core decomposition [12],

which is a scalable approach of extracting dense subgraphs from the network. Since by

definition of the core-periphery organization, innermost cores are deeply embedded in the

network, we posit that a large fraction of shortest paths in the network will pass through the

inner cores. Hence path based central nodes, i.e., nodes with high closeness and between-

ness centrality will form a rich club within the inner cores of the network. We perform a

detailed investigation regarding the relation between core- periphery structure and central-

ity resilience in this thesis. We further study stability of k-core structure in time varying

networks and develop an approach for predicting high central nodes a priori. Finally, we

also develop novel representation learning algorithms leveraging k-core structure which

results in scalable node embeddings, useful for downstream prediction tasks.

1.2 Objectives

The three main objectives which govern the investigations carried out in this thesis are laid

out below.
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1.2.1 Rich centrality clubs in networks

In many real world networks the high degree nodes form a densely connected subgraph.

This is known as the rich club phenomenon. Our objective here is to extend the definition

of rich clubs from high degree vertices, to shortest path based centralities, particularly high

closeness and betweenness centrality vertices. We also investigate how the k-core structure

is connected to the notion of centrality based rich clubs. We attempt to group networks

into two categories. In the first category we find networks in which the high central nodes

are part of the innermost core and the second category where this property is not observed.

We intend to study global topological properties for each category of networks and identify

discriminating factors. Finally, we investigate how these properties can be leveraged into

building novel applications.

1.2.2 Identifying influential nodes in time varying networks

Our objective here is to extend the categorization of networks based on the localisation of

high central nodes in the inner cores, to dynamic time varying networks. An important

problem in time varying networks is to know a priori, using minimal computation, whether

the influential vertices of the current time step will retain their high centrality, in future

time steps, as the network evolves. We aim to identify novel structural properties based on

core-periphery organization, which help us identify classes of networks where high central

nodes are part of inner cores and this property does not change significantly as the network

evolves. We further aim to use time series based models to predict the overlap between

the high centrality vertices in the current time step to the ones in the future time steps. A

predictive approach allows us to avoid expensive shortest path computations in each step

as the network changes.

1.2.3 Connecting deep neural approaches to network core-periphery

Our third and final objective revolves around developing novel network representations us-

ing k-core structures. State-of-the-art node embedding technique define a proxy of node
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neighborhood using various random walk based approaches and learn representations such

that neighboring vertices end up with similar embeddings. Core-periphery organization en-

forces an organic hierarchy in the network such that vertices which lie in similar levels can

be deemed to have similar characteristics. This motivated us to seek novel node embedding

approaches leveraging the k-core structure.

We further observe that nodes in the inner cores of the network have higher influence com-

pared to vertices in the outer fringes or periphery. We sample a random set of nodes from

the inner/outer cores of the network and label inner core nodes 1 (influential) and outer core

nodes -1 (non-influential). We find that we can formulate a semi-supervised learning task

using these labelled nodes utilizing recent advances in graph convolution network (GCN)

framework. More precisely, we can classify unlabelled nodes into influential/not-influential

category by learning from the representations of labelled counterparts. We recommend k

nodes, which the classifier has highest confidence based on softmax probabilities of the

final layer. Using this framework we can avoid explicit computation of highly influential

nodes and obtain considerable speedup.

1.3 Contributions

The contributions that we make in this thesis to achieve the objectives outlined in the pre-

vious section are as follows.

1.3.1 Rich centrality clubs in networks

Many scale-free networks exhibit a ‘rich club’ structure, where high degree vertices form

tightly interconnected subgraphs. In this thesis, we explore the emergence of rich clubs

through shortest path based centrality metrics. We term subgraphs of connected high close-

ness or high betweenness vertices as rich centrality clubs (RCC). We explore the possibility

of RCC’s existing within the innermost core of the network. Networks often exhibit hierar-

chical nested subgraphs, such that each inner subgraphs are progressively denser. Consider

an undirected graph G with V as the set of vertices and E as the set of edges. Let K be a
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subset of vertices, i.e., K ⊆ V and G(K) be the graph induced on G by the vertices in K.

G(K) is considered to be k-core of the graph G only if

• For every v ∈ K, dG(K)(v) ≥ k where dG(K)(v) denotes the degree of v in G(K).

• For each K ⊂ K ′ ⊂ V ∃ u ∈ K ′\K such that dG(K′)(u) < K. All such u form the

K ′ shell of the graph.

Since by definition, inner cores are embedded deep inside the network, we posit that large

proportion of shortest paths in the network goes through the inner core. This implies that

path based high central nodes are localised in the inner core. Our study is further motivated

by the fact that over the last few years several papers [60,104,117,138] have independently

reported that vertices in the inner shells of the networks can be leveraged to identify high

influential nodes or serve as seeds for community detection. However, each paper focused

on only one type of hypothesis and there was rarely any overlap between the networks

studied in these papers. We conducted an integrated study over a large set of real-world

and synthetic networks and observed that the reported properties of the vertices in the inner

shells hold only for a certain type of networks. This observation impelled us to investigate

the topological property of networks where the inner shells contain high centrality nodes.

Structure and function of RCC

We observed that the inner shells of networks are typically dense, thus if they contain high

centrality nodes, then by virtue of being dense, these cores would form a rich centrality

club. However, unlike degree which is a local variable, closeness and betweenness central-

ities are based on shortest paths which are global variables. Building on this observation

we demonstrate spectral properties of networks with/without RCC. Spectra of networks

with/without RCC show distinctive signatures. We also show that presence of rich cen-

trality clubs confers several favorable properties to the networks. In particular, due to the

presence of path based central vertices within a small subgraph, the vertices in the RCC

can be effective seed nodes in quickly spreading information across the network. More-

over, similar to the traditional rich club, the presence of RCC increases the resilience of

the networks under edge perturbations. Given these favorable properties, we posit that,
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in many cases, the presence of RCC is desirable. To this end, we propose a modification

model that can implant a RCC in a network where it is absent. Our model is such that other

properties of the original network including the power law exponent, the average degree,

clustering co-efficient remain unchanged.

Scattered RCC

Our rich club definition is restrictive because it considers a single rich club, formed at the

innermost cores of a network. This feature occurs only in specific types of networks. In

order to understand centrality resilience of all types of networks, we extend the concept of

a single rich club to that of scattered rich clubs. Scattered rich clubs are connected high

centrality vertices, that may be spread across the network. We empirically demonstrate

that rich clubs of centrality vertices can be spread across multiple cores of a network. We

further demonstrate that analogous to the single rich club being formed in the innermost

cores, the scattered rich clubs are present in the innermost cores of a meta network. This

meta network can be constructed by extracting communities and cliques in the original net-

work. This is indicative of a second order dependency between the substructures affecting

centrality resilience.

To summarize, our key contributions are as follows.

• We study the formation of rich clubs of shortest path based centralities in complex

networks and observe that their presence can lead to faster identification of high cen-

trality nodes and communities. We demonstrate empirically and theoretically that in

networks containing RCC, the shells are expander-like and the density of the shells

decreases from the inner to the outer shells.

• Develop novel attack models and show that networks containing RCC are resilient to

perturbations to their edges. Besides, the vertices within the RCC are effective seed

nodes for information spreading.

• We propose a modification model that can insert RCC into a network, while main-

taining other structural properties of the original network. Our model is reversible in
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that when operations are applied in reverse (deletion instead of addition of edges),

the RCC can be removed from a network, while also maintaining the other structural

properties. Our model only requires the information of the degree of the vertices,

which is a much faster operation than computing the betweenness and closeness cen-

tralities.

• We propose the concept of scattered rich clubs and show that rich club of central

nodes can be scattered across the network as opposed to being concentrated at the

core. They form a part of the innermost core of the second order meta network

whose nodes are cliques in the corresponding original network.

• We provide theoretical justification supporting our empirical results.

1.3.2 Identifying influential nodes in time varying networks

One of the important problems in time-varying networks is predicting how their features

change with time. If this information is known a priori using minimal computation, then

users can take appropriate action in advance to utilize such features. The most significant

among network properties are the centrality features, that are used to estimate the impor-

tance of a vertex in a network. Information can spread more quickly when high closeness

centrality vertices are selected as the initial seeds. Similarly, vaccinating high betweenness

centrality vertices, through which most of the shortest paths pass, can reduce the spread

of disease. The central vertices also play an important role in spreading influence in a so-

cial network as has been observed in several works [5, 108]. In a dynamic setting (where

the network changes over time) knowing these highly central vertices beforehand is of

prime importance as it would facilitate in developing strategies for targeted advertising or

setting up infrastructure for vaccination drives. However, this might result in expensive

re-computation of shortest paths as the network varies over time. Our goal is to develop

algorithms based on the network structure, so that such re-computations are avoided.
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Drawbacks in current approaches

Current approaches focus on predicting the average centrality values of the network [89].

However, note that most applications, such as the ones discussed above, require the ids of

only the top-k centrality vertices, not the values or the ranking of all the vertices in the

network. Therefore, simply predicting the average centrality over the entire network may

not be useful in a majority of the practical contexts.

Our approach

We present a two-step algorithm for predicting the high centrality vertices of time-
varying networks. In the first step, we predict the overlap between the set of high centrality

vertices of the current time step to the set of high centrality vertices of the future time step.

In the next step, assuming that the network snapshot is already available in time, we analyze

its innermost core to find the ids of the high centrality vertices. The key to our prediction

method is based on the hypothesis that in many real world time-varying networks, most of

the highly central vertices reside in the innermost core. In other words, a large fraction of

the shortest paths connecting pairs of vertices in such networks, pass through the innermost

core; the vertices in the periphery (and the outer cores) of the network are mostly connected

via the vertices residing in the innermost core of the network. A key contribution of our

work is that we develop a set of novel heuristics to classify networks based on the extent to

which the highly central vertices are in the innermost core. We define the heuristics below:

• Fraction of inter-edges connected to the top core (EF): We calculate the ratio of

the number of inter core edges where one end point is in the top core to the total

number of inter core edges in the network. Given this ratio is high, inner core nodes

play major role towards connecting a random pair of nodes in the network.

• Average density of the non-top cores (CFX): This metric computes the average

density of all cores, except the top one. The lower the density, the sparser the core,

and the higher the average intra-core distance.
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• Density of the top-core (ED): We compute the density of the top core which is the

ratio of the number of intra-core edges in the top core to the total possible edges

between the vertices in the core.

• Top-core overlap (CV): This metric takes into account the changes in the top core

structure over consecutive time steps. We measure the overlap as the Jaccard simi-

larity between the vertices in the top cores of networks at two successive temporal

snapshots.

We develop a classification framework based on the above metrics. Consider that we obtain

t− 1 temporal snapshots G1, G2, ..., Gt−1 for an initial set of networks. For each snapshot

we calculate the heuristics hence each temporal graph Gt can be represented by 4 tuple,

i.e., (EF,CFX,ED,CV ). We calculate the cumulative distribution function for each

parameter from the t − 1 values obtained for that parameter. We perform hierarchical

clustering on each parameter, using D-statistic as the pairwise similarity measure. We

cut the dendrogram at cluster size two, hence having the clustering algorithm output two

clusters (C1, C2) for each parameter. If the mean value of parameter inC1 conforms more to

the desirable property, i.e., have high values for EF,ED,CV or have low value for CFX ,

we consider C1 as desirable cluster and C2 as undesirable cluster. If an unseen network

arrives, we compute the CDFs for each of the four parameters from the t−1 snapshots. Next

we obtain the similarity (D-statistic) of the CDF of a particular parameter with the centroid

of both C1 and C2 (i.e., the traditional Rocchio technique [10]). Finally, we classify the

network to that class to which it is more similar based on the similarity with the centroid of

the class. For a network which can be classified into a desirable group, time series models

such as ARIMA can be applied successfully toward predicting high central nodes.

Validation of our framework

We further validate our results by comparing how the predicted and actual high centrality

vertices perform in a practical context. For high closeness centrality vertices, we compare

the time to spread a message when the high centrality vertices are taken as seeds, and for the

high betweenness centrality vertices, we compare how the length of the diameter increases
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as the high betweenness centrality vertices are deleted from the network. For these exper-

iments we select a set of random vertices as control, and compare the performance of the

actual high centrality vertices, predicted high centrality vertices and the randomly selected

vertices. For networks where we could predict the results with high accuracy, the effect of

the original and predicted vertices are very similar, and these results are markedly different

from the effect on the randomly selected vertices. Interestingly, for networks, where our

prediction accuracy is low, the effect is similar for closeness/betweenness centrality for all

the three sets of vertices. This result indicates that networks with low prediction accuracy

do not have significantly high closeness/betweenness centrality vertices and therefore the

prediction itself does not serve any practical purpose.

To summarize, our key contributions are;

• We develop a feature set to calculate the extent to which high central nodes in the cur-

rent temporal snapshot of a dynamic network will retain their importance in future

time-steps. Based on these features we propose a Rochio algorithm based supervised

classification technique for temporal networks into two predefined classes. In the

first class of networks path based high central nodes are localized in the inner cores

of the network, hence can be easily detected without explicit computation. In the

second class of networks high central nodes cannot be extracted avoiding some form

of explicit shortest path enumeration.

• In contrast to existing centrality prediction approaches which focus on predicting av-

erage centrality of the temporal snapshots, we focus on predicting top k high central

nodes in the network. We argue that such an approach is more practically useful in

downstream tasks like influence maximization. We show the efficacy of our approach

through comparison against several existing baselines on centrality prediction task in

dynamic networks.

• We devise useful downstream tasks, namely message spreading and increasing net-

work diameter, to show that the predicted vertices indeed perform similar dynamic

roles in the network, when compared against actual nodes.

• Finally, we present a theoretical rationale behind the workings of our method.
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1.3.3 Connecting deep neural approaches to network core-periphery

The conventional paradigm of handcrafted feature engineering to generate node represen-

tations in networks has been largely overhauled due to advances in techniques which auto-

matically discover and map a node’s structural properties into a latent space. These tech-

niques are useful because manual feature engineering requires extensive domain knowledge

as well as tedious exploration of structural properties such as degree, centrality, clustering

coefficient etc. Without loss of generality, representation learning encompasses the task of

transforming a graph G(V,E) from V → I|V |×|V | to the mapping V → R|V |×d with the

constraint d << |V |.

Unsupervised approach for generating rich node representations relies on developing ran-

dom walk based exploration strategies from each node. Two nodes which fall in the same

exploration path multiple times are embedded close in space. This technique is an appli-

cation of the word2vec framework [124], where the objective is to bring two words, which

co-occur in the corpus, close in the vector space. Supervised approaches on the other

hand generate a task specific representation. Given a target downstream task such as node

classification, semi supervised approaches such as graph convolutional network [62, 91],

generate representations for unlabeled nodes by learning from a small fraction of labeled

nodes. These representations are useful in discriminating nodes into task specific classes.

In this chapter we first develop a novel unsupervised network representation approach uti-

lizing core-periphery structure. We further show that the information of the k-core structure

is also useful in generating embeddings which help in locating influential nodes in the net-

work.

Unsupervised network embedding techniques

Unsupervised network embedding problem is efficiently solved by applying a skip-gram

model with negative sampling [124], which is a celebrated technique for learning meaning-

ful vector representations for words. To represent a target word, nearby co-occurring words

in the sentence are considered as context words. Adapting this framework for graphs, there

have been several works such as [139, 167] which learn social representations of a graph’s
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vertices, by learning from neighbor nodes generated from short random walks. These walk

sequences act as proxy for context words in a sentence. One of the key drawback in these

works is the assumption that the context nodes can be always efficiently generated by walk

sequences from a source node thus building a sample set appropriately representing the

structural and the functional properties of the source node.

Our proposal

We propose a solution to the above problem by developing an algorithmic framework,

core2vec which utilizes intermediate-scale structure of the network, i.e., the core-periphery

structure, for learning the feature representation of a node. Nodes in similar cores have

similar connectivity profiles and assume comparable roles in the network. We leverage this

nested “onion like structure" in real world complex networks, to develop a flexible biased

random walk which seeks similar core nodes as context nodes for a source vertex. More

specifically we develop a strategy to guide a random walk sequence to identify similar core

nodes both in close proximity as well as distant neighborhood. Our experiments show that

our scheme brings nodes with similar core ids closer (closeness) as well as separates nodes

with different core ids (separability) farther in the vector space compared to state-of-the-art

methods like node2vec [63], DeepWalk [139] and LINE [167], thus establishing the neces-

sity of our approach. Our method utilises the property that nodes in similar cores possess

similar connectivity profiles and assume similar roles in the network.

Validation of core2vec

We validate the effectiveness of our scheme by estimating similarity of words (nodes) in

word association networks. Networks built from linguistic units (e.g., word co-occurrence

and word association networks) are known to have a well-defined core-periphery structure

(see [33] and the references therein) and hence the motivation to choose word association

networks for our validation purpose. We learn representations of each node in two large

word association networks using core2vec as well as using similar baselines. We next es-

timate the (cosine) similarity of the vector representations of word pairs, rank these word

pairs based on the similarity obtained and compare the same with the ranking of the pairs
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drawn from different ground-truth datasets on word similarity. We compare the rankings

using the Spearman’s rank correlation co-efficient and show that we always outperform the

baselines and by at most 46% in certain cases. We further project the representations ob-

tained by our method and comparable method on 2D space using PCA and show core2vec

performs better in bringing semantically related words closer.

Semi supervised network embedding techniques

Semi supervised learning (SSL) approaches are well known in graph based learning tasks [190,

191]. However these techniques have become particularly popular over the last couple of

years due to introduction of graph convolutional architecture (GCN). GCNs are generaliza-

tions of convolutional neural networks, and work efficiently on general grid like geometric

data akin to graphs. In most real world scenarios graphs are arbitrarily large in size hence

it is expensive to obtain ground truth labels for all nodes in the network. SSL approaches

are useful in cases where limited label information is available in structured data. GivenA

as the adjacency matrix, D̃ii =
∑

j (A+ I)ij and X denotes known node representation,

the GCN framework updates X in each iteration using the Equation 5.3 below.

H = f
(
D̃−

1
2 ÃD̃−

1
2 )XW

)
(1.1)

Here W ∈ Rd×d are the model parameters and f denotes non-linear activation function.

H is subsequently used to predict the class label of the downstream classification task. The

error in case of labeled nodes are backpropagated using gradient descent approaches.

Influential node prediction

We propose a task of ranking nodes based on network influence using GCNs. Influence of

nodes in network can be computed using centrality metrics such as closeness, betweenness

which is expensive. We propose to alleviate this problem by learning discriminating rep-

resentation of nodes which aides in node ranking. In our investigations, we have observed

that nodes with high coreness have higher influence compared to nodes in the periphery.
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This information is obtained using k-core decomposition [12] in O(E). Once the core infor-

mation is available, we label a random sample of nodes with high coreness as label 1 and

equal number of random nodes in the outer cores as -1. For each unlabeled node, positive

and negative label distribution is predicted by the model by learning from the local struc-

ture of the training labels. Once the predicted labels are obtained we recommend top-n

positive nodes with respect to class probabilities as possible influential nodes. In our ex-

periments we find that the update method proposed by Kipf et al. [91] akin to Equation 5.3

does not work well in generating useful representations. We modify the update setup by

introducing a novel masking scheme (Equation 1.2). Here C is the adjacency matrix such

that distant core edges are removed. This method eliminates edges which span distant cores

and increases network homophily. Our technique reduces morphing of useful features in

the network by reducing the neighborhood set.

H = f
(
D̃−

1
2

(
Ã� C

)
D̃−

1
2 )XW

)
(1.2)

To summarize, our key contributions are as follows:

• We design a novel network embedding model core2vec, with a unique exploration

strategy for context nodes guided by global information. Our technique does not

require any compute intensive meta information like community label or domain

specific node level attributes.

• We demonstrate that our model can favorably map similar core nodes closer in space

and distant core nodes farther in space.

• We illustrate an application of our embedding in word analogy task, where we com-

pare similar words scored by our method against manually curated gold standard

scores. Our method can predict similar words better from the baseline techniques.

• A novel SSL approach for ranking influential nodes based on core-periphery struc-

ture. We introduce a novel masking technique which works well compared to vanilla

aggregation setup.
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1.4 Organization of the Thesis

The thesis is organized into six chapters.

Chapter 2 presents a detailed literature survey of the metrics, analysis and methods perti-

nent to this thesis.

In Chapter 3, we demonstrate empirical evidence that for a class of networks, path based

high central nodes reside in the innermost core. This naturally result in the emergence

of a second class of networks where high central nodes do not lie in the innermost core.

We coin the former dense subgraph as rich centrality club (RCC). We show discriminating

structural properties in both classes of networks. We further establish useful properties of

RCC in terms of information propagation and resilience. Since RCC is a desirable property

in networks we develop a novel method for implanting RCC in networks without altering

general network property like degree distribution, clustering coefficient etc. Leveraging

communities and cliques inside communities, we construct a meta network from the orig-

inal network and show that in the second class of networks, it is possible to locate high

central nodes in the inner core of this meta network. Finally we present theoretical justifi-

cation of our empirical results.

In Chapter 4 we deep dive into our second objective, i.e., predicting high central nodes in

temporal networks utilizing a k-core structure. We first propose a novel set of heuristics

which help us classify networks into two categories. Given these two categories we show

application of time series models such as ARIMA, ARMA, MA to identify ids of the top

central nodes in the network. We further validate our prediction framework in details with

extensive experiments. Finally we provide a brief theoretical justification of our prediction

framework.

In Chapter 5 we first propose a novel network representation learning framework (core2vec)

utilizing hierarchical structure induced by k-core decomposition. We explain our method-

ology in details and further validate on real world word association data. We show that our

framework can map semantically similar words close in vector space better compared to

similar baselines.
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Besides random walk based approach, we also develop a novel semi supervised method to

identify influential nodes in the network utilising graph convolution networks (GCN). We

develop a novel masking approach on top of the vanilla GCN and further illustrate its utility

in predicting influential nodes in the network.

Chapter 6 concludes the thesis by summarizing the contributions and pointing to a few

topics of future research that have opened up from this work.





Chapter 2

Related Work

In this chapter, we review the relevant literature related to the objectives laid out in this the-

sis. We organise the related work as follows. We discuss definitions of network measures

pertinent in this thesis in the first section. This is followed by an elaborate discussion on

applications developed based on these measures and potential drawbacks which we address

here. In the second section we cover relevant topics in this thesis connected to temporal net-

works as well as time series models, we leverage in our work. Finally in the last section we

make a detailed survey of network representation approaches covering both unsupervised

methods as well as state-of-the-art graph convolutional networks.

2.1 Centrality metrics

One of the key questions which drives considerable research effort is “which nodes in a

network are influential?”. There exist several measures inspired by social science, which

quantifies influence of a node based on his/her local or global position in the network. We

first enumerate some of the metrics we study in this thesis. Throughout this thesis we

denote a graph by G, where V,E are the set of vertices and edges respectively.

Degree centrality: This is the simplest form of centrality in the network which calculates

total number of edges connected to the node. It is intuitive in social science literature to

19
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assume that nodes which have high degree have dominating social prestige [132]. How-

ever in real world web scale graphs it is possible for malicious nodes to garner high degree

centrality using link farming techniques [58].

Closeness centrality (ClC(v)): This metric calculates the average of the shortest dis-

tance between a vertex v and all other vertices in the network. It is calculated as ClC(v) =
1∑

s 6=v∈V
dis(v,s)

, where dis(v, s) is the length of the shortest path between v and s. The shortest

path computation is performed using Dijkstra’s algorithm [41]. The inverse of the shortest

distance is considered because in case node s is unreachable, dis(v, s) is infinite. Unreach-

able nodes do not contribute to overall computation of ClC.

Betweenness centrality (BwC(v)): Betweenness centrality proposed by Freeman et al. [55]

for a vertex v is the ratio of the number of shortest paths between a vertex pair that

passes through v and all the shortest paths possible between that pair. It is given by

BwC(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

, where σst is the total number of shortest paths between s and

t, and σst(v) is the total number of shortest paths between s and t that pass through v. In

our experiments we use the computation algorithm proposed by Brandes et al. [21] which

has a complexity of O(|E|∗|V |) for undirected, unweighted graphs.

k-core (Gkmax): A k-core of a graph G is a maximal subgraph Gkmax , such that each of its

nodes has degree at least kmax. If graph G is connected we can consider it as Gk1 , i.e., a

1-core. Recursively removing all nodes of degree one leads to a subgraph where all nodes

having degree at least which is a 2-core. This process of peeling the network to discover

k-core subgraphs is called k-core decomposition [12]. This process has complexity O(|E|)
and assigns a unique core number (Cv) to every node v ∈ V . If Cv = km it implies that

v ∈ Gkm and ∀Gki possible, Gkm is the maximum subgraph which v can be part of. The

innermost k-core subgraph is also referred to as the graph degeneracy.

k-shell (Sk): k-shell is a set of vertices such that each node in the k-shell has at least k

connections to nodes in the k-shell or higher shells in the network. We show a toy example

in Figure 2.1. Core-periphery structure has been generally defined in existing literature as

either hub and spoke formulation of onion layered or series of shells formulation [56]. In

this thesis we have followed the later formulation however for detailed exposition of the

former typology, we refer to the seminal work of Borgatti et. al. [17]
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Figure 2.1: Illustrative example of a network decomposed into hierarchical subgraphs
indicating different k-cores. Nodes of different shells are colored.

Rich club: Rich club is a key structural organisation where group of nodes with high de-

gree centrality, also known as hubs are connected among themselves [40]. A quantitative

definition is provided by Zhou et al. [188,189], where authors calculate rich club coefficient

as φ(k) = 2∗E>k

N>k∗(N>k−1)
. Here N>k denotes nodes with degree at least k and E>k denotes

their corresponding links.

Spectral gap (h(G)): Spectral gap is an approximate measure for the expansion factor

in a graph. The expansion of a set of nodes S ⊂ V where |S|≤ |V |
2

is a function of the

number of edges connecting V − S to S. That is, if N(S) is the set of nodes to which S is

connected, then the expansion of S is |N(S)|
|S| . Expansion factor is defined for a graph such

that it is the minimum expansion for all possible subsets, i.e., min∀S∈V :|S|≤ |V |
2

|N(S)|
|S| .

Expansion factor offers help in deciphering structural cues of a graph, in particular they can

inform us about the presence (or absence) of edges which can act as bottlenecks inside the

network. This practically means that measuring the expansibility of a graph, enables one to

know to what extent the graph can be broken into disjoint modules. Large expansion factor

implies a large fraction of edges need to be removed from the graph to arrive at disjoint

subsets of comparable sizes [116].

Accurate calculation of the expansion factor is NP hard [126]. For d-regular graphs it can

be approximated by the second smallest eigenvalue of the spectrum of the normalised graph

Laplacian given by L = I −D− 1
2AD−

1
2 . The second smallest eigenvalue (λ2), also known

as the spectral gap, is related to Cheeger constant by λ2
2
≤ h(G) ≤

√
2λ2 which is also

know as Cheeger’s inequality [80]. It was shown in [34] that the lower bound also holds
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for general graphs.

2.2 Network applications

In this section we conduct a literature survey on some of the notable works in crucial net-

work applications. We focus on information diffusion and robustness, which are the key

applications we investigate in this thesis.

Information diffusion: Spread of information in networks is often considered in the same

light as spread of epidemics in social contact networks. Hence several models relevant in

the field of epidemiology has been applied in information diffusion for networks. This in-

cludes classical models like susceptible-infected-susceptible (SIS) model [46] where each

individual in the population is either infected or susceptible at any point in time. Satoras

et al. [136] discovered absence of an epidemic threshold in scale free networks [23], which

imply real world networks are inclined to the spreading and the persistence of infections.

Several variants of these models exist and have been validated. Eguiluz et al. [49] showed

that variation of network topology such as high clustering coefficient and degree correla-

tions dictate epidemic threshold in networks and further conjecture that connection between

hubs play a crucial role in determining epidemic threshold. Similar results were reported

by Moore et al. [128] where authors connected epidemic threshold with general percola-

tion theory. Chakrabarti et al. [28] further showed that epidemic threshold is related to the

largest eigenvalue of the graph adjacency matrix and developed counter strategies for virus

propagation using non linear dynamic models. Several models exist to predict information

propagation since they are applicable in viral marketing, planning interventions etc. Kempe

et al. [86] proposed approximation algorithms with performance guarantees for basic diffu-

sion models such as linear threshold model and independent cascade model in their seminal

work. We use simpler variants of these models in some our works in this thesis.

Robustness: Robustness in network is generally concerned with understanding how net-

work measures such as centrality metrics, core number etc. change under random or tar-

geted perturbation of the network. In these lines one of first work was proposed by Borgatti

et al. [16] Here the authors tested Erdős Rényi random graphs with four possible errors,
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that can occur in the graph. These are node removal (random removal of a proportion of

the existing nodes in the graph), node addition (insertion of a proportion of extra nodes into

the graph along with new edges randomly added from each of the added nodes to existing

nodes), edge removal (random removal of a proportion of existing nodes), edge addition

(insertion of new edges not present in the original graph). Networks were perturbed with

the above random errors and different centrality measures such as degree, betweenness,

closeness, and eigenvector centralities were examined using Jaccard index or Pearson’s

correlation coefficient. The main result of their simulations was that the accuracy of the

centrality measures in the perturbed graphs decreases with increasing error predictably and

monotonically. Similar experiments were performed in [152, 153, 170] on random as well

as real world networks and stability of centrality metrics were probed and a stable variant

of betweenness centrality was proposed. The stability of rankings for PageRank metric in

complex networks was examined under degree preserving edge rewiring based perturba-

tion in [59]. Results show the emergence of “super-stable” nodes in scale-free networks.

Adiga et al. [4] developed several useful noise models and show how inner core subgraph

is affected following perturbation of network using these models. Laishram et al. [96] pro-

posed strategies to make k-core robust under edge based perturbation. Ufimtsev et al. [171]

used addition based noise models proposed by [4] and showed using empirical as well as

analytical means that ranking of centrality metrics due to stochastic perturbation depend

on local connections. In our experiments in this thesis we follow the perturbation strategy

inspired by [96, 171].

2.3 Application of k-core decomposition

Correlation of coreness and centrality measures: Coreness has been shown to be corre-

lated with several centrality metrics. A strong Spearman’s rank correlation between degree

and coreness has been presented in [158, 159] and the authors developed an anomaly de-

tection system based on this correlation. In contrast, in [102] the authors showed that core

number has low Pearson’s correlation with centrality metrics such as degree, closeness and

betweenness. An explanation could be that while many nodes in the network could poten-

tially have the same core number, they would typically tend to be different in terms of the
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centrality measures and thus Pearson’s correlation would be low. A more accurate compar-

ison would be to consider the overlap of the top ranked nodes based on core numbers and

other centrality metrics, which is what we do here.

Coreness for community detection: k-core decomposition outputs an ordered partition of

the graph after processing it hierarchically. In [60], the authors proposed that this hierarchi-

cal information can be utilized by any graph clustering algorithm to obtain more meaningful

partitions. In [138], the authors proposed a framework to accelerate label computation for

nodes by modularity maximization utilizing the k-core information. They estimate a max-

imum speedup of 80% through rigorous experiments. Wang et al. [176] utilized k-core

information to speedup classical community detection method such as CNM [38] by at most

25%. We show in this thesis that such methods are not useful for all real world networks;

however, there is a special class of networks for which these methods work very well.

Coreness for spreading: The core number, though derived from degree, is a better indica-

tor of the capacity for information dissemination. Strategically placed nodes, as detected

by the k-core decomposition are able to spread information to a larger portion of the graph.

This result has been shown by several works such as [9, 92, 137]. In [39, 145, 175], the

authors applied k-truss decomposition which is a triangle based extension of k-core de-

composition, with the objective of finding a refined set of influential nodes from all the

potential high core nodes. The authors show that k-truss decomposition extracts influential

spreaders which can infect a large portion of target nodes within first few steps of the SIR

epidemic model. We show in this thesis that in some class of networks, coreness based

spreading method does not work well and it is comparable to naïve random seed based

method. On the other hand, for a special class of networks, the coreness based spreading

is very effective. There exist other significant applications of core periphery structure for

which we refer to the comprehensive tutorial [115].

2.4 Temporal networks

Centrality in time-varying networks: Time varying networks have been a topic of huge

interest largely because in contrast to static networks, they take into account the time frame
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of pairwise interactions, which explains the dynamics of roles undertaken by nodes in the

network. We refer to comprehensive reviews [78, 79] for detailed coverage on the topic.

One of the key directions of research in temporal networks has been identifying influential

agents in a dynamic setting. In this lines, there have been two types of research – the first

type have attempted to adapt definitions of traditional centrality metrics to the dynamic

setting and the second type have attempted to predict centrality of nodes from previous

versions of the network, without explicitly calculating the metrics for the current version.

The inherent dependence of centrality metrics on the network structure has been further

studied by Braha et al. [19, 20, 75]. Their seminal work throws insights on the dynami-

cal behavior, including a dramatic time dependence of the role of nodes apparent in the

different snapshots of the network. These characteristics are not apparent in static (time

aggregated) analysis of node connectivity and network topology thus motivating the neces-

sity to have separate definitions of centrality in temporal networks. In [88,133], the authors

utilize a powerful framework of time ordered graphs which transforms dynamic networks

to static networks with directed flows. The authors adapt definitions of centrality such as

closeness, betweenness and degree for temporal networks, by defining temporal geodesic

distances on time ordered graphs. However, the authors assume the knowledge of all the

nodes in the combined time steps beforehand which is not generally possible in dynamic

networks, where both the edge and the node may appear or disappear in subsequent time

steps. Further the time complexity for calculating temporal paths is comparable to static

case, hence no real gain in terms of efficiency is achieved. Lerman et al. [98] propose a

dynamic centrality, where they show that ranking of nodes obtained by their method varies

considerably from traditional approach of detecting important nodes by aggregating tempo-

ral networks as static graph. There are also separate lines of work [112, 147, 168, 169] that

adapt the definition of eigenvector centrality and PageRank for dynamic networks; how-

ever, they require iterative parameter estimation and are not suitable for streaming setting.

In contrast, to existing methods, in this thesis we propose to predict central nodes in future

temporal time point by virtue of studying activity in past timesteps.

Social contact patterns: In [89] the authors showed that temporal human activity net-

works have periodic patterns and further devise prediction functions to calculate central-

ity of nodes at future time steps based on past history. Yang et al. [181] developed a

method, that combines concepts of preferential attachment and triadic closure to capture a
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node’s prominence profile. They further showed that the proposed node prominence pro-

file method is an effective predictor of degree centrality. In [186,187] the authors observed

that a node’s temporal social contact patterns show strong correlation with its centrality.

Based on this property they predicted closeness centrality and applied their prediction to

improve data forwarding in opportunistic mobile networks. One of the prime drawback of

these previous works is in the datasets, which have been primarily restricted to human con-

tact networks. To the best of our knowledge ours is the first work which applies centrality

prediction on diverse real world and synthetic networks. We also use time series predic-

tion models, which have not been employed for this task previously. These key nodes play

important role in information diffusion processes and epidemiology, due to their strategic

position in the network. In case of static networks, influential nodes are estimated in terms

of centrality metrics. The authors in [66] proposed a generalization of betweenness central-

ity in dynamic frameworks using the idea of temporal shortest path. The authors showed

difference between traditional betweenness centrality and temporal betweenness central-

ity. On similar lines [88, 166, 168] proposed generalization of other node level centrality

metrics in dynamic setting and motivated the need behind this objective.

Time series forecasting: Time series modeling have found a lot of application in econo-

metric analysis and financial forecasting [47, 52, 68]. State of the art time series models

such as ARIMA model and its variants [85, 120, 121, 184] have been applied in several

real world problems yeilding fruitful results. Real world problems such as traffic for-

casting [64, 106] and weather forcasting [163] have been tackled using statistical time

series models. Hybrid methods have also been devised to learn models in online set-

tings [107,183]. In the context of temporal networks major works incorporating time series

formulation includes [72, 81, 149]. In [161], the authors leveraged time series forecasting

models to predict global properties of the network at a future time step. Although our pre-

diction scheme is based on a similar foundation, to the best of our knowledge ours is the

first attempt toward identifying the top central nodes in a network.
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2.5 Network representation learning

In this section we provide a brief overview of network representation learning. We first

cover algorithmic techniques for unsupervised network representation learning. We then

describe supervised approaches, i.e., graph convolution neural networks as well as some of

its major variants.

2.5.1 Unsupervised network representation learning

Recently there has been a surge of research toward developing node embedding methods,

where the goal is to encode nodes as low-dimensional vectors. These vectors summarize

information regarding node position in the graph and local neighborhood. Such representa-

tions can also be considered projecting nodes into a latent space, where geometric relations

between vectors in this latent space, generally measured using dot product, correspond to

proximity based similarity in the original graph [25].

The basic framework on which several algorithms works on, learns an encoder function

f(u) → Rd which projects a node u into low d dimensional vector. Similarly a decoder

function g(f(u), f(v)) → R+ is trained that maps pairs of node embeddings to a real-

valued node similarity measure. The similarity which the decoder represents is user defined

graph statistics such as existence of edges between nodes, presence of common neighbors

etc. Given that we have a precomputed structural similarity between two nodes given by

G(u, v), the encoder-decoder architecture is optimized such that g(f(u), f(v)) ∼ G(u, v).

Most approaches learn parameters of the encoder-decoder framework by minimising the

reconstruction loss function l(g(f(u), f(v)),G(u, v)) over pair of nodes in the training

dataset. Once we have optimized the encoder-decoder system, we can use the trained en-

coder to generate embeddings for nodes, which can then be used as a feature inputs for

downstream machine learning tasks. For example, one could feed the learned embeddings

to a logistic regression classifier to predict the community that a node belongs to [139], or

one could use distances between the embeddings to recommend friendship links in a social

network [63].
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Many recent successful methods that follow the above framework learn the node embed-

dings based on random walk statistics. The key idea is optimizing the node embeddings

so that nodes end up having similar embeddings if they tend to co-occur on short random

walks over the graph. Thus, instead of using a deterministic measure of node similarity,

these random walk methods employ a flexible, stochastic measure of node similarity, which

has led to superior performance in a number of settings. One of the pioneering works in

this direction was proposed by Perozzi et al. [139] as DeepWalk. Here author extended a

neural language model approach, i.e., skipgram for constructing the node embedding. Sikp-

gram [124] aim to maximize the co-occurrence probability among the words that appear

within a predefined window size. DeepWalk [139] first samples a set of walks from each

node of the input graph using truncated random walk. The basic approach is to uniformly

sample a neighbour of the last visited node until the maximum length is reached. Each

path sampled from the graph corresponds to a sentence from the corpus, where a node

corresponds to a word. Following the exploration step skipgram is applied on the walks

to maximize the probability of observing a node’s neighbourhood conditioned on its em-

bedding. In this way, nodes with similar neighbourhoods, i.e., having large second-order

proximity values end up sharing similar embedding. DeepWalk optimizes the following

objective function

L =
∑
u,v∈D

− log g(f(u), f(v))

where g(.) is represented as softmax function

g(f(u), f(v)) =
expf(u)

T ∗f(v)∑
∀k 6=v∈V f(k)T ∗ f(v)

The softmax function mimics the conditional probability p(u|v), i.e., node u co-occurring

on the random walk path starting from v.

Similar to DeepWalk [139], node2vec [63] preserves higher order proximity between nodes

by maximizing the probability of occurrence of subsequent nodes in fixed length random

walks. The crucial difference from DeepWalk is that node2vec employs biased-random

walks, that provide a trade-off between breadth-first (BFS) and depth-first (DFS) graph
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searches, and hence produces higher-quality and more informative embeddings than Deep-

Walk. Choosing the right balance enables node2vec to preserve community structure as

well as structural equivalence between nodes.

DeepWalk and node2vec initialize the node embeddings randomly for training the models.

As their objective function is non-convex, such initializations can be stuck in local optima.

HARP [31] introduces a strategy to improve the solution and avoid local optima by better

weight initialization. To this purpose, HARP creates hierarchy of nodes by aggregating

nodes in the previous layer of hierarchy using graph coarsening. It then generates embed-

ding of the coarsest graph and initializes the node embeddings of the refined graph (one

up in the hierarchy) with the learned embedding. It propagates such embeddings through

the hierarchy to obtain the embeddings of the original graph. Thus HARP can be used in

conjunction with random walk based methods like DeepWalk and node2vec to obtain better

solutions to the optimization function.

One of the limitations of the above approaches is that they donot scale to very large net-

works. Tang et al. proposed an efficient approach LINE [167] which scales to arbitarily

large network. More precisely LINE explicitly defines two functions; one for first order

proximity and another for second order proximity. In the experiments conducted, second

order proximity performed significantly better than first, and it was implied that includ-

ing higher orders may level off the improvements in accuracy. LINE defines two joint

probability distributions for each pair of nodes then minimizes the KL divergence of the

distributions. The two distributions are the adjacency matrix and the dot product of node

embedding. A departure from the former approach has been taken in [26, 179], where

authors learn low dimensional global representation for nodes using matrix factorization

based techniques.

2.5.2 Semi supervised network representation learning

Deep learning techniques on graphs has seen remarkable progress in the last few years.

This success is attributed to similar success in image recognition tasks through application

of convolutional neural networks (CNN) [87]. However CNN’s cannot be applied directly

to graph data since they do not have regular grid like structure. Graph convolutional neural
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network (GCN) solves this problem by learning spatially invariant, parameterized filter on

graph data.

The key mathematical techniques essential to solve these objectives is borrowed from the

rich literature of graph spectral analysis [36]. Spectral graph theory proposes graph Lapla-

cian matrix which is defined as L = D − A, where Dij =
∑

j Aij . Graph Laplacian is

further normalised as L = I − D−
1
2AD−

1
2 . One of the amenable properties of L is that

it is positive definite, hence can be diagonalised using singular value decomposition such

that L = UΛUT. Here U denotes a space of orthonormal eigenvectors corresponding to

Λ, i.e., eigenvalues of the graph Laplacian. Given x→ Rn, where xi indicates a scalar sig-

nal for the ith node in the network, graph Fourier transform [160], translates signal x into

frequency domain using matrix multiplication with UTx. U is interpreted as the Fourier

basis, where Λ is interpreted as frequencies of the graph signal. Bresnon et al. [44] pro-

posed parameterised local filters denoted by gθ such that x̂ = gθ(L)x. This convolution

operation can be further expressed as

x̂ = gθ(UΛUT)x = Ugθ(Λ)UTx

The authors suggested that explicit computation of the former operation is computationally

expensive. This is primarily because eigenvalue extraction has O(N3) complexity [54].

The authors proposed a solution to the computational burden by expressing gθ(L) as recur-

sively computed Chebyshev polynomial inspired by [70, 73].

Kipf et al. [91] showed that K localised spectral graph convolution approach proposed

by [44] suffers from overfitting in cases of networks with large neighborhood sizes. This

is prevalent in real world networks emerging from social, information, biological domains [100]

which have wide degree distributions. They proposed an efficient version of GCN by con-

straining parameters as well as the Chebychev expansion. The final convolved signal matrix

is represented as Z = D̃−
1
2 ÃD̃−

1
2Xθ where Ã = A + I and D̃ij =

∑
j Ãij . This is also

called renormalization trick, applied to alleviate vanishing/exploding gradient in case of

deep networks.

Wu et al. [177] showed that non-linear activation function GCN [91] borrowed from tradi-

tional deep learning machinery [71] adds unnecessary complexity, which can be removed
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by removing non linearity and collapsing stacked layers. They empirically validated that

in some datasets superior results can be obtained compared to other complex architec-

tures. The authors in [177] further theoretically justified that their convolution operation

manifests as low-pass-type-filter which captures low-frequency signals and corresponds to

smoothing features across a graph.

Attention mechanism has become a cornerstone in state-of-the-art performance of sequence

based tasks [105, 148, 173]. One of the benefits of attention mechanism is that they add

interpretability to the final results. Velickovic et al. [174] proposed GAT which can be con-

sidered as the first attention based architecture for node classification task on graph data.

This architecture is a special case of MoNet proposed by Monti et al [127].

One of the common themes in most of the previously discussed methods is that they ap-

ply spectral approach for extending CNN architecture over graphs. Hamilton et al. [69]

introduced GraphSAGE, which forsakes this direction of exploration and proposed an in-

ductive approach. This technique operates by sampling a fixed-size neighborhood of each

node, and then performing a specific aggregator over it (such as the mean over all the sam-

pled neighbor’s feature vectors, or the result of feeding them through a recurrent neural

network). Chen et al. [32] proposes a similar approach but with more principled sampling

methodology which saves gradient computation time. [142,185] are other notable non spec-

tral architectures which borrow from statistical relational learning and Bayesian methods

respectively.

Emergence of GCN have opened up several potential applications in various domains rang-

ing from natural language processing, knowledge graphs etc. Yao et al. [182] formulated a

heterogeneous graph from a corpus such that nodes are documents and words; edges among

nodes are word occurrence in documents (document-word edges) and word co-occurrence

in the whole corpus (word-word edges). They showed that existing architecture [91] of

GCN yields superior document representation even with naïve one-hot initialisation. In

similar lines Vashisth et al. [172] applied GCN towards improving word representation

by using novel syntactic dependency graphs from sentences. [24, 135, 150] showed utility

of GCN architecture in knowledge graphs and solved pertitent problems such as link pre-

diction, important node prediction, community detection. In this thesis we modify GCN

architecure [91] to leverage graph topology and develop a method for detecting central
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nodes similar to existing works such as [103, 135, 141].



Chapter 3

Rich centrality clubs in networks

3.1 Introduction

Network resilience measures how well certain properties of a network are maintained under

attacks to the system. To date, most research has focused on the robustness of a network,

that is how attacks can disconnect the network [6, 29, 30]. In this thesis, we study network

resilience with respect to path-based centralities, specifically betweenness and closeness

centralities. We term this type of resilience as centrality resilience, as opposed to the con-

nectivity resilience in earlier studies. Centrality resilience is more difficult to detect than

connectivity resilience. When one part of a network cannot communicate with the rest of

the system, it is easy to infer that the cause is due to disconnectivity. Attack on centrality,

however, may not disconnect the network, but result in longer distances when traversing

the network. The increased length of the distances, is due to the change in the ranking of

the high centrality vertices which may not be immediately apparent until the centralities of

the system are re-computed. Therefore, perturbing centrality resilience is a very powerful

approach for insidiously disrupting the functioning of a system, without a drastic change to

its structure. Such techniques can be applied for attacks that are typically malicious (stealth

attacks in cybersecurity), where the location of attack cannot be immediately known. They

can also be benign such as vaccination under limited resources, for systems where complete

disconnection is not possible.

33
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3.1.1 Structural properties that affect centrality resilience

In this thesis we show that core periphery structure of networks play significant role in gov-

erning centrality resilience. The core number of a node is the highest value k such that the

node is a part of a subgraph (k-core), with every node having atleast k neighbors. The as-

signment of core numbers to nodes can be computed in O(|E|) (|E|= # edges) complexity

using k-core decomposition [12]. To find a k-core, Batagelj et al. [12] recursively removes

nodes with degree less than k iteratively starting with pendant vertices. We posit that since

the inner cores of the network are dense and have a hierarchical structure, path based high

central nodes, i.e., high closeness and betweenness nodes should be localised within the

inner cores. These high central nodes form a rich club within the inner cores which we

term as rich centrality clubs (RCC). In this chapter of the thesis, we empirically show this

property in several real world and synthetic scale free networks. We further demonstrate

certain desirable properties in networks with RCC. We show these rich clubs can be used

as potential seed nodes for community detection as well as effective propagators of infor-

mation in the network. We develop novel attack models and show that networks with RCC

are robust against random and targeted edge perturbation. Our results also demonstrate that

not all networks have this property, hence we develop novel techniques to extract rich clubs

using second order dependencies. Given these favorable properties, we posit that, in many

cases, the presence of RCC is desirable. To this end, we propose a modification model that

can form a RCC in a network where it is absent. Our model is such that other key properties

of the original network including the power law exponent, the average degree, shortest path

based centralities and clustering coefficient remain unchanged. Finally we give theoretical

justification of our empirical results.

Network suite

The real-world networks that we use for our experiments are available publicly at the fol-

lowing resources [95,99]. Given below is a brief description of these networks. A summary

of their properties is noted in Table 3.1 and 3.2. The α is the scale free exponent obtained

after fitting the empirical degree distribution to a power law distribution which is given by

p(k) ∼ k−α where p(k) is the fraction of nodes having degree k. All the networks are
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considered to be undirected.

• Autonomous systems networks (AS and Caida): The autonomous system is a net-

work of highly connected routers. Each AS exchanges traffic with neighbors (peers)

using BGP (Border Gateway Protocol). Here we use two example networks; both

were created using BGP table snapshots. The first dataset (AS) was collected from

University of Oregon Route Views Project and it contains 733 daily data traces be-

tween autonomous systems which span an interval of 785 days from November 8,

1997 to January 2, 2000. The second dataset was collected by Center for Applied

Internet Data Analysis (Caida) from January 2004 to November 2007.

• Bible: This data is derived from text of King James Version of the Bible and captures

the relation between nouns (places and names). Each time two names occurred in

the same verse, a connection was created between them to create a co-occurrence

network of people and places.

• Software: This graph is formed by analyzing the Apache Ant library which is a

tool for developers to build Java projects from the source code to the executables.

The DependencyFinder tool was used to extract the class hierarchy and inter class

dependency. Each vertex represented a class and two classes were connected by an

edge if one class depended on another. Although the relation is directed, for our

experiments we consider the network to be undirected.

• Power: This network contains information about the power grid of the Western States

of the United States of America. An edge represents a power supply line. A node is

either a generator, a transformer or a substation.

• Facebook: This network is composed of Facebook users and the post they have

made to each other’s walls. Here nodes represent a user and an edge between u and

v indicates a post has been made by at least one of the users (u or v) to the other’s

wall.

• Protein: This is a network of protein-protein interactions in yeast. A node represents

a protein and an edge represents a metabolic interaction between two proteins.
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Network Nodes Edges α µ(dv) µ(ClC) µ(BC) LCN

AS [99] 6474 13895 1.235 4.29 0.27 0.004 12

Caida [99] 16493 33372 1.17 4.04 0.27 0.001 20

Bible [95] 1707 9059 1.523 10.61 0.31 0.001 15

Software [95] 994 4645 1.168 9.32 0.34 0.002 11

Protein [95] 1458 1993 2.106 2.73 0.15 0.004 5

Facebook [99] 7178 10298 2.896 2.86 0.11 0.001 5

Hepth [99] 2694 4255 1.487 3.15 0.18 0.001 7

Power [95] 4941 6594 2.845 2.66 0.05 0.003 5

Table 3.1: Test suite of real world networks and their properties. α: power-law expo-
nent, µ(dv): average degree, µ(ClC): average clustering co-efficient, µ(BC): average
betweenness centrality. (LCN): largest core number in the network.

• Hepth: This is a collaboration network from the e-print arXiv and covers scientific

collaborations between authors and papers in High Energy Physics. If an author i co-

authored a paper with author j, the graph contains an edge connecting i to j. If the

paper is co-authored by k authors this generates a completely connected (sub)graph

on k nodes. The data covers papers in the period from January 2001 to April 2003.

• Synthetic network: We also generate as many as 16 synthetic networks of varying

sizes and varying network core structures using the MUSKETEER synthetic network

generation tool discussed in [65]. We refer to these networks as N1 through N16 in

the rest of this chapter (see Table 3.2).
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Network Nodes Edges α µ(dv) µ(ClC) µ(BC) LCN

N1 14212 34901 1.215 16.3 0.25 0.0007 16

N2 10162 25154 1.28 4.95 0.27 0.0008 14

N3 36469 96990 1.237 2.66 0.24 0.003 27

N4 65630 170061 2.29 2.66 0.13 0.003 12

N5 4091 33352 1.438 2.66 0.33 0.003 21

N6 6785 44381 1.421 2.66 0.31 0.003 19

N7 6009 13585 2.016 2.66 0.18 0.003 6

N8 3863 22356 1.268 2.66 0.34 0.003 23

N9 11278 19616 2.737 3.47 0.03 0.003 5

N10 19623 33711 2.832 3.43 0.05 0.00049 5

N11 5980 9501 3.027 3.17 0.05 0.05 6

N12 6045 13592 2.373 4.49 0.11 0.0035 7

N13 7783 35185 2.517 3.61 0.06 0.0033 6

N14 15988 28373 3.029 3.54 0.09 0.004 5

N15 28651 51159 3.073 3.57 0.04 0.0028 6

Table 3.2: Test suite of synthetic networks and their properties generated using [65].
α: power-law exponent, µ(dv): average degree, µ(ClC): average clustering co-efficient,
µ(BC): average betweenness centrality. (LCN): largest core number in the network.

3.2 Motivating experiments

We present the experiments that motivated our research. We test whether vertices with high

core numbers (i) have high centralities and (ii) can be used as seed nodes for community

detection.

3.2.1 Correlation with other centrality metrics

Several papers [37, 77, 104, 122, 156, 162], claim that the vertices with high core numbers

should also have high centrality values. To test this claim, we compute the Jaccard coeffi-

cient (Jc) given by S1∩S2

S1∪S2
between the set of vertices with highest core numbers (S1) and an

equal number of high ranked nodes for each of the centrality metrics (S2).

The results in Table 3.3 show a clear separation of the networks. In the first group, all the

networks (blue) have high Jc implying significant number of high central nodes also have

highest core numbers. In the second group, (brown) the high core numbered nodes do not

have high centrality as per the low Jc scores.
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Network degree closeness betweenness

AS 0.6 0.75 0.5

Caida 0.56 0.69 0.49

Bible 0.49 0.64 0.43

Software 0.40 0.5 0.23

Protein 0 0 0

Facebook 0.10 0 0

Power 0 0 0

Hepth 0.05 0.05 0.05

N1 0.63 0.86 0.68

N2 0.722 0.530 0.653

N3 0.74 0.78 0.80

N4 0.68 0.81 0.68

N5 0.80 0.82 0.78

N6 0.57 0.71 0.6

N7 0.39 0.48 0.37

N8 0.79 0.79 0.79

N9 0 0 0

N10 0 0 0

N11 0 0 0

N12 0.02 0 0

N13 0.06 0 0

N14 0 0 0

N15 0.002 0 0

Table 3.3: Jaccard index between nodes with highest coreness and equal number of high
centrality nodes. Results clearly separate the two categories of networks into ones that
have an RCC (blue) and ones that do not have an RCC (brown).
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3.2.2 High core numbers to detect communities

In existing techniques of community detection utilizing k-core structure [138,176], the net-

work is reduced to its k-core subgraph, for a predetermined value of k, and the communities

in the subgraph are computed. The vertices in these communities are used as seed nodes to

propagate the community information to other vertices.

We note that this process will succeed only if the communities are well represented in the

reduced network. Therefore to test the applicability of such algorithms, we tabulate how

the vertices in the innermost core are distributed across the communities. Figure 3.1, 3.2

plot the community ids of the networks in the x-axis and the number of nodes from the

innermost core that are members of a particular community in the y-axis. The communities

are ordered in decreasing order of size and we use the Louvain method [15], to find commu-

nities. We include all communities whose at least one vertex is in the innermost core. We

again observe a separation between two class of networks. In one group (see Figure3.1),

the vertices from the innermost core are spread over multiple communities, whereas in the

other group (see Figure 3.2), the vertices from the innermost core are concentrated in one

or two, communities. Clearly, the first group is more suitable for the community detection

algorithm described earlier. Figure 3.3 shows the community distribution in the innermost

core of two networks from our test suite. These results demonstrate that vertices with high

core numbers are not always distributed across multiple communities, and in some cases

can be concentrated in only one community.

3.2.3 Evidence of rich centrality club

These motivating experiments demonstrate the existence of two groups of networks. One

group consists of networks where the vertices from the inner cores have high correlation

with vertices of different high centrality metrics and can be used as seed nodes for com-

munity detection. The other group consists of networks where the vertices from the inner

cores have no correlation with other high centrality metrics, and are concentrated in one or

two communities.
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Figure 3.1: Distribution of innermost core nodes in the different communities of the
networks with RCC. The X-axis indicates the community ids of a network ordered in terms
of number of nodes present in that community. Y-axis indicates the number of innermost
core nodes in a particular community with the id on the x-axis. The X-axis stretches
includes all communities that contain the nodes from the innermost core.

To visualize how rich centrality clubs are formed in the innermost cores, we divide the ver-

tices in the network into two sets of nodes, based on whether they are part of the innermost

core or not. We partition the nodes outside the innermost core into their respective com-

munities and combine each community into a single supervertex. This process of graph

summarization is similar to previous work of Koutra et al and others [109, 110, 164, 180].

The set of nodes of the innermost core are also combined into a supervertex. Two super-

vertices are connected if there is at least one edge between the nodes comprising them.

Figure 3.4 shows a visualization of the reduced network for two benchmark networks.

Each node is labeled as cx for communities and k for the innermost core. The superver-

tices are ordered by size with respect to average centrality (closeness and betweenness) of

constituent vertices. For the network Caida, which is in the first group, the supervertex

corresponding to the innermost core has significantly high centrality and is in the centre.

For the network, Power, which was in the second group, there are no distinctively high

centrality supervertex.

Since in the first group, the high centrality nodes are in the innermost cores and since by
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Figure 3.2: Distribution of innermost core nodes in the different communities of the
network without RCC. The X-axis indicates the community ids of a network ordered in
terms of number of nodes present in that community. Y-axis indicates the number of
innermost core nodes in a particular community with the id on the x-axis. The X-axis
stretches includes all communities that contain the nodes from the innermost core.

their definition these vertices are connected to each other, our experiments demonstrate that

rich club of high centrality vertices is formed in these networks. In the next section, we

present the topological property of these networks that lead to the formation of RCC.

To qualitatively see that the innermost core contains the high centrality vertices, we rank

each supervertex based on its centrality score. If the supervertex corresponding to the inner-

most core is within the top 10 ranked supervertices, we report its reciprocal rank (1/rank)

in Table 3.4; otherwise, if it is not within the top ten, we report zero. We observe a distinct

grouping of our test suite of networks.

Clearly, the networks where the reciprocal rank of the supevertex is central, i.e. the recipro-

cal rank is almost always one, comprises of the set of nodes forming the rich centrality club.

We observe that in one group of networks in our test suite, the reciprocal rank of the su-

pevertex corresponding to the innermost core is almost always one, indicating that this

supervertex is indeed the most central.



42 Chapter 3

Network Closeness Betweenness

AS 1 0.5

Caida 1 1

Bible 1 1

Software 1 1

Protein 0 0

Hepth 0.5 0.33

Power 0 0

Facebook 0.5 0.5

N1 1 1

N2 1 1

N3 1 1

N4 1 1

N5 1 1

N6 1 1

N7 0.5 1

N8 1 0.5

N9 0 0

N10 0 0

N11 0.5 0.33

N11 0.33 0.33

N12 0.33 0.5

N13 0.5 0.5

N14 0 0

N15 0 0

Table 3.4: Reciprocal rank of the supervertex corresponding to the innermost core of
the network. The ranking in done both based on closeness (second column) as well as
betweenness (third column) centrality.
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Figure 3.3: Visualization of the subgraph formed using the innermost core nodes. Here
nodes belonging to the same community are annotated with the same color and id. In the
software network the innermost core clearly has nodes from several communities. In the
protein network all nodes in the innermost core belong to the same community.

3.2.4 Formal definition and rationale

Let the subgraph induced by the vertices in shell k and their neighbors be Sk. Let dk be the

average degree and nk, the number of nodes in Sk. Let λk be the second smallest eigenvalue

of the normalized Laplacian matrix of Sk. Let the average distance of a vertex in shell Sa
to a vertex in inner shell Cb, a < b, be rab.

Given these parameters, we state that a network will contain a RCC if the following prop-

erties hold.

1. If for two shells k1 and k2, k1 < k2, then dk1 < dk2 and nk1 > nk2.

2. For all shells Sk, λk > α

3. For all shells Sk, rkx < β, where Cx is a high numbered core, with density close to 1.

The first property requires that the shells have progressively smaller number of vertices,

and become more dense from outer to inner shells. The second property provides the upper

bound of the second smallest eigenvalue, and in turn, to the Cheeger constant at each shell.
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Figure 3.4: Network formed by two category of supervertices, i.e, communities (denoted
by c1, c2, . . . ) and the innermost core (denoted by k). Two supervertices are connected if
the corresponding nodes from which they are formed are connected by at least an edge.
Higher size of supervertex imply higher average centrality of constituent vertices.

The higher λk, the more expander-like the associated shell. If the shell has multiple com-

ponents, then each of them should maintain this property. The third property states that the

hops to travel from the outer shells to inner cores should be small.

The values of the parameters α and β are determined based on size and density of the

whole network. As per our experiments, setting α > 0.5 and β < 4 can clearly distinguish

between networks that contain RCC and those that do not.

3.2.5 Density of shells

The first condition is a feature of the core-periphery structure of almost all scale-free net-

works, whether they contain RCC or not. To demonstrate this, we first subdivide the ver-

tices into subgraphs Sk. For each, we compute the average degree and the number of nodes.

Since the number of shells varies across networks, for uniform presentation of the results

we divide our results into three buckets. Starting from innermost we place the first 25%

shells in the first bucket (k4). The next 25% falls in the second bucket (k2) and the final

50% falls in the last bucket (kn). For each bucket we calculate the mean and the standard

deviation of the average degrees and number of nodes classified in that bucket. These val-

ues are plotted in Figure 3.5(a) (average degree) and Figure 3.5(b) (number of nodes). As

seen from the figure with the exception of slight deviations, the first property is maintained
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in both sets of networks.
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Figure 3.5: (a) The average degree of, and (b) the number of nodes in, the shell based
subgraphs for different buckets of shells for each network.

3.2.6 Eigenvalue of shells

For each Sk, we compute the normalized Laplacian, extract its spectrum using eigenvalue

decomposition, and compute the eigengap. Since the number of shells varies across net-

works, for uniform presentation of the results we divide our results into three buckets.

Starting from innermost we place the first 25% shells in the first bucket. The next 25% falls

in the second bucket and the final 50% falls in the last bucket. For each bucket as defined,

we calculate the average eigengap and the standard deviation. These values are plotted in

Figure 3.6.

We observe that in graphs where we assume that RCC exists, there is a slow decline of the

average eigengap. The Cheeger constant is high in the inner shells and gradually decreases

from the inner to the outer shells. In the other group of networks, there is an abrupt fall in

the average eigengap after the first bucket of inner shells. The first group can be bound by

a large α than the second group, thus corroborating the second property.



46 Chapter 3

a
s2 ca b

i

sw N
1

N
2 p
r

p
w fb

h
e
p

N
1
0

N
1
10.0

0.2

0.4

0.6

0.8

1.0

A
vg

 E
ig

e
n

 G
a
p

k4
k2
kn

Figure 3.6: Average eigengap of the shell based subgraphs for different buckets of shells
for each network. Results show graceful degradation for the networks with an RCC while
an abrupt fall for the networks with no RCC.

3.2.7 Distance between shells

The third property enforces that on average two vertices in outer shells are more likely to

be connected through inner dense shells. We show this in Figure 3.7, where in networks

with an RCC, the average shortest distance of the nodes in the outer shells to the innermost

(kmax) and the second innermost shells (kmax−1) is low compared to networks without an

RCC. Considering that a large fraction of nodes lie in outer shells and nodes residing in

outer shells are closer to nodes in the inner dense shells than the other nodes in the nearby

outer shells, most of the shortest paths should pass through inner dense shells.
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Figure 3.7: The average shortest distance of a node in the outer shells to a node in the
innermost (kmax) and the second innermost shell (kmax−1).
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3.2.8 Experimental observations

We see from the experiments that networks with RCC have dense innermost core. Fur-

thermore, several communities emanate from the innermost core. These communities are

spread across multiple shells and as per the definition of a community, vertices within a

community would be tightly connected. Thus every shell in a network with RCC has sev-

eral tightly connected regions. We also observe, that due to their definition, boundary of

the shells increase as we go from inner to outer shells. Taking these observations together

we hypothesize that the networks with RCC are expander-like across their shells.

Finally, a majority of the shortest paths pass through the innermost core. However, the

shortest paths between two vertices in the same community are likely to be within the com-

munity. Therefore, in the networks with RCC most of the paths in between the communities

pass through the innermost core. To test our hypothesis we conduct two experiments. First,

we compute the expansion property as approximated by the eigengap of the networks. Net-

works with RCC should have high spectral gap to indicate that the Cheeger constants for

the subgraphs are also high.

Second, to test the overall ‘centrality’ of the innermost core, we create a reduced network

by combining vertices in the innermost core into a supervertex, and the vertices of each

community into other supervertices. For networks with RCC the supervertex consisting of

the innermost core should have the most central (betweenness and closeness) node in the

reduced network.

3.3 Centrality based rich club coefficient

Degree based rich club coefficient is defined as φ(k) = 2∗E>k

N>k∗(N>k−1)
. Here N>k denotes

nodes with degree at least k and E>k denotes their corresponding links. Let EG(V1, V2) =
Cut(V1,V2)

min(V ol(V1),V ol(V2))
be the minimum number of edges required to disconnect graph G such

that V1, V2 ∈ G. We argue rich club coefficient covering centrality can be defined as

Φ(k) =
∑

i>=k|Egi − Egi+1
| where gi represent subgraphs formed using the ith shell vol-

ume. Higher Egi for the inner shells indicate that high central nodes have formed a rich
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centrality club and low value of Φ(k) indicates that the rank order is stable against ran-

dom edge based perturbations. We have empirically validated this in our real and synthetic

dataset. Our experiments have shown that networks such as AS, Caida with higher Egi ,

lower Φ(k) have resilient centrality clubs compared to power, Facebook where this prop-

erty does not hold. However all these networks are structurally almost indistinguishable as

far as degree related properties are concerned including a very similar range of scale free

exponent α (see Table 3.1, 3.2).

3.4 Beyond single rich clubs

Single rich clubs have been established to be present in the innermost core of the network.

We now show that a similar relation also holds for the second class of networks where in-

ner k-core subgraph do not contain the major high central nodes. The work of Estrada et

al. [50, 51] shows that scale-free real world networks, such as the ones used in our experi-

mental setup, fall in two categories. Either they have a dense core with sparsely connected

periphery or the network is composed of modular units which are individually densely

connected but have sparse inter module connection. Few related works [42, 93, 94, 178]

have shown that dense substructures or multi-cores emerge within these modules. Based

on these results, we explore how rich clubs are located within modular units of the net-

work. We term such sub-structures scattered rich clubs and extract them using through the

following steps. (Figure 3.8 shows an illustrative example).

Step (i) Finding dense clusters in the network. We first find dense clusters in the network.

Each dense cluster should be sparsely connected to other clusters. To do so, we first

partition the network into disjoint communities to obtain modular substructures1 and

then use a clique propagation method [45] to identify dense subgraphs (size ≥ 4)

within these communities.

1We use the Louvain method [15]. Note that, regardless of the non-determinism of community detection

any standard algorithm can be used since our primary goal is not to find exact communities, but to partition

the graph into modular substructures.
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Step (ii) Forming the meta network. Once the set of significant cliques (size ≥ 4) has been

found, we analyze their hierarchies using graph summarization methods inspired by

[97, 110]. We construct a second order meta network formed by the cliques, where

each clique is turned into a supervertex. There are edges between supervertices if the

representative cliques are linked to each other.

Step (iii) Exploring the core periphery structure. We now perform k-core decomposition on

this second order meta network to uncover its innermost core, and then observe where

the high centrality vertices are located, with respect to the k-cores on this meta net-

work.

Results in Table 3.5 show that the networks can be clearly classified into two groups.

In the top group (top panel), most of the high centrality vertices are located in the

innermost core of the original network. These are the networks that have a single

rich club. For the bottom group (bottom panel) very few of the high centrality nodes

are present in the cores. However, for all the networks, if we consider the innermost

cores of the meta network, most of the high centrality vertices are part of them.

This result demonstrates two important properties, (i) most high centrality vertices are in-

deed present in dense clusters, forming the scattered rich clubs and (ii) the scattered rich

clubs are connected to each other and form the innermost core of the second order meta

network, where the clusters are represented as vertices. In a practical context, the single

rich club are formed in networks with a single important centre, such as a hierarchical or-

ganization structure with one set of important people at the top. In contrast, scattered rich

clubs represent networks with multiple centres of importance. An example, would be a

flat organization structure, where each department has its own administrative officers. The

second order connections between the scattered rich clubs represent that the administrative

officers are connected among themselves, such as through executive committees.

In the previous sections, we observed that in certain real world networks, inner most k-core

hosts a large fraction of high central nodes. This intrinsic connection between k-core sub-

graph and high central nodes, can be leveraged toward building useful applications. In the

next section we showcase some of these downstream tasks which can be envisaged, taking

advantage of our novel findings.
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Figure 3.8: Schematic diagram of the meta network generation process. Top left panel
is the original network. Community detection method is applied to extract the key
modules [15] (top right panel). Clique percolation method is applied on each module to
find existing cliques [45] (bottom right panel). Finally meta network is formed such that
cliques act as supervertices. Influential nodes exists in the innermost core of the meta
network (bottom left panel).

Network
G (Cmax) (%) G′ (Cmax) (%)

CC BC CC BC

as2 65 60 85 80

caida 65 60 85 80

bible 65 60 85 80

sw 65 65 90 85

N1 75 70 80 85

N2 70 75 80 85

protein 10 10 95 90

facebook 0 0 95 100

hepth 5 5 85 90

pow 0 0 45 25

N9 0 0 100 85

N10 5 0 80 85

Table 3.5: Percentage of top-20 high central closeness (CC) and betweenness (BC) nodes
in the inner most cores of the original network (G (Cmax)) and the second order network
(G′ (Cmax)). The red rows correspond to networks that have a single rich club while the
green rows correspond to networks that have scattered rich clubs. Note that for both types
of networks a large percentage of high centrality vertices are in the innermost cores of the
second order networks.
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3.5 Application

In this section, we demonstrate how the presence of RCC can be leveraged in some impor-

tant applications.

3.5.1 Attack models

We develop attack models that leverage our knowledge of the single and scattered rich

clubs. We empirically demonstrate that attack models based on networks with scattered

rich clubs are the most effective. Our attack models are as follows.

1. Uniform perturbation: Our first attack model is based on random selection of edges

and does not take into account any information about the network structure. Many

attack models in literature are based on random attacks, and hence we select it as a

baseline. We remove edges from the network uniformly at random. Probability that

edge (u, v) is removed is given by P (u, v) ∝ 1
|E| where |E| is the number of edges

in the network.

2. Core assortative perturbation: We remove edges if the core number of both the

end points is high. This attack is based on the single rich club model, where the high

centrality vertices are located in the innermost core. Given an edge (u, v), P (u, v) ∝
cu ∗ cv, where cu, cv are the core numbers of the nodes. Thus edges belonging to high

core nodes are more likely to be removed.

3. Rich club assortative perturbation: This model is based on our observation that

high centrality nodes in certain class of networks are located within scattered rich

clubs. We remove an edge (u, v) if it is part of a (scattered) rich club obtained in the

previous section. The probability that (u, v) is removed is given by P (u, v) = 0 if

(u, v) are not part of a (scattered) rich club. All edges within a scattered rich club

have equal probability of getting removed.

Description of experiment: For each network, we first calculate the rank order of the

top-20 high central closeness and betweenness nodes. We then apply three different attack
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models. For each attack model, we remove from 2% to 8% of the existing edges. We calcu-

late the rank order of the original top-20 nodes in the perturbed version of the network. We

calculate the difference between the two rank orders using the Kendall τ metric (τ ) which

gives a score of 1 if the orders are perfectly aligned and -1 if none of the original orders are

retained. For each network we obtain five instances of the perturbed network and report the

average τ along with the standard deviation (σ) in Figure 3.9, 3.10, 3.112. Our results are

representative and hold for all other networks in the dataset.
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Figure 3.9: Results for application of uniform perturbation based attack on different
networks.
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Figure 3.10: Results for application of core assortative perturbation based attack on
different networks.

Results: Figure 3.9 shows the results of the random attack. Majority of the networks with

single rich club show high τ , i.e., they are less affected by the attack. The networks with

scattered rich clubs, are more affected as evident by the low τ score. This is because a

random attack will remove edges across the network, and some of them will be part of the

scattered rich clubs which are also spread across the network. Figure 3.10 shows the results

of the core associative model. Both the networks with single rich club and with scattered
2We report here top-20 central nodes. Our experiments with different values of the top m central nodes

where m = 10, 15, 25, 50 have yielded similar results.
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Figure 3.11: Results for application of rich club assortative perturbation based attack on
different networks.

rich clubs are affected. However, the networks with scattered rich clubs only show a minor

drop in τ when compared to the uniform perturbation. This is because not all vertices of

this class of networks are in the innermost core. Figure 3.11 shows the results of the rich

club associative model. This attack is the most effective of the three for both classes of

networks. This is because the attack is based on the structure of the scattered rich club and

so can locate dense cliques with all the top-k high centrality vertices. Thus, the rich club

assortative model is the most effective attack model.

3.5.2 RCC as influential nodes

Vertices, which when selected as seed nodes can accelerate the diffusion process in net-

works are known as influential nodes. We hypothesize that the RCC, if present in a net-

work, is a natural choice for the seed nodes for spreading. In order to test this hypothesis we

execute a diffusion process adapted from [86, 114] on two groups networks in our dataset,

i.e., those with an RCC and those without.

We choose a seed set size of S (here we show results for S = 20) and populate this set

preferentially on the basis of highly connected nodes which includes high centrality nodes

(degree, closeness, betweenness), innermost shell nodes (these are nodes from within the

RCC in networks that demonstrate its presence) and a random set of nodes. These set

of seed nodes initially have an information and they pass it to all their neighbors using a

flooding based broadcast approach (all neighbors of an informed vertex get informed).

2Our experiments with different value of S yield similar results.
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This approach spreads the message very quickly and hence modified versions have been

used in peer-to-peer networks for sending queries and searching [84]. Although in real

world systems this method is difficult to implement due to scalability issues, our goal here

is to study how effective the vertices in the RCC are as seed nodes.

The x-axis in Figure 3.12, 3.13 shows the fraction of vertices that have received the mes-

sage and the y-axis the steps to reach these fraction of vertices. The networks form two

groups. In one group that demonstrate the presence of RCC, the vertices from the inner-

most core are effective seed nodes for broadcasting and the time is comparable to the time

when high centrality vertices are selected as seeds. The other group is when the vertices

from the innermost core perform very poorly as seed nodes. The time to spread the infor-

mation is equal to or worse than a random selection. These results show that only vertices

in the innermost core in networks that demonstrate the presence of RCC are effective as

seed nodes for spreading information.

We observe that networks with RCC have certain desirable properties. In these networks

nodes in the innermost k-core subgraph, control major information pathways in the net-

work. Therefore they can be used as seed nodes for rapid information dissemination in

the network. This determination of seed nodes is computationally inexpensive, compared

to traditional methods of explicit central node computation. Top-k central nodes in these

networks also have stable rankings i.e. random perturbation of the network in terms of

edge removal donot significantly alter rankings. This property is useful in infrastructure

networks such as router network, where shortest paths are preserved even with minor edge

based perturbation so that key nodes retain their ranks and router tables need not be updated

frequently. Therefore it would be important to have a mechanism to be able to impose a

RCC in a network. In the next section we outline a method which injects rich centrality

club in a network, without altering key network properties.
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Figure 3.12: Time required in terms of the number of steps for the information to
disseminate to n

4
, n
2
, 3n

4
, n nodes in the network. Results are plotted for the networks that

demonstrate the presence of RCC, coreness based seed nodes consistently appear to be
good choices as message initiators.
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Figure 3.13: Time required in terms of the number of steps for the information to
disseminate to n

4
, n
2
, 3n

4
, n nodes in the network. Results are plotted for the networks that

donot demonstrate the presence of RCC. In such the networks our experiments show that
coreness based initiators perform equal to or worse compared to random initiators
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3.6 Algorithm to construct RCC

We now present a simple yet effective modification algorithm for inserting RCC into a

network and conversely removing RCC from a network containing it.

Rationale for the algorithm: To explain the rationale for our algorithm, we present two

simplified models of a network with a RCC and without a RCC (Figure 3.14). If the net-

work contains RCC, then the inner shells are expander like, and communities meet at the

RCC. An example model conforming to this structure would be a large clique in the center

surrounded by smaller cliques.

In a network without a RCC, the majority of the communities do not meet through the in-

ner core. This indicates that the inner core is not at any special position with respect to the

paths connecting the communities. One example model of such a network would be a ring

of cliques of different sizes. The smaller cliques can have connections between them. Here

the highest core is at the side of the network rather than the center3.

As per the example figure, to introduce a RCC, we can simply connect the high degree

vertices across communities. The high degree of the vertices ensures that the clique (or

near clique) formed by them will have higher core numbers. Joining communities ensures

that the communities connect within this subgraph. In the network without an RCC in

Figure 3.14, we would connect all the vertices in the ring.

Conversely, to destroy the RCC property of the network, we will simply delete the edges in

the inner core, such that the connections between the communities are destroyed, and the

highest numbered core moves away from the center. Our approach is inspired by existing

works in tuning network topology for attack mitigation [111, 151].

Algorithm for forming RCC: Our proposed approach for connecting the communities via

high degree vertices is however very expensive. This is because finding communities it-

self is a computationally intensive operation. A faster alternative is to simply connect (or

3We emphasize that these models are only idealized representations of the two types of networks, and

more complicated connections occur for real-world networks. Nevertheless the principal idea is maintained,

i.e., for networks with a RCC, the innermost core is at the center of the network.
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Figure 3.14: Simplified models of a network with (left) and without (right) an RCC. Red
vertices have core number 4, green vertices have core number 3 and brown vertices have
core number 2. Note that the RCC is formed in the innermost core.

disconnect) connections between the high degree vertices. This method works, because

in networks without a RCC, high degree vertices within the same community are likely

to be already connected. Therefore, any vertex pair connected as part of the modification

algorithm will be in different communities.

Moreover, increasing the connections among the high degree nodes also brings all those

(usually low degree) nodes that are neighbors of these high degree nodes closer in the net-

work. Thus, the nodes in the innermost cores will have high centrality, as is a characteristic

of networks with a RCC. On the converse side, for a network with a RCC, the high degree

vertices will be in the inner core, so removing edges between them disconnects the cores.

It might seem from our approach that rich clubs of high degree vertices are also the rich

centrality clubs. Figure 3.14 shows a counter example. The right hand graph has a rich

club of high degree vertices but not a dense subgraph of high centrality vertices.

Experiments. The pseudocode of the algorithm is given in Algorithm 1. Figure 3.15, plots

the eigengaps of the networks before (blue lines) and after (green lines) the modification.

To clearly compare between the original and modified networks, we plot the eigengaps for

each shell, rather than over an aggregate of shells as done in Figure 3.6(c). Note that for the

networks that demonstrate the presence of RCC (AS, Bible and Software), the eigengap of

the modified network is smaller, i.e., the green line is lower and has a steeper slope than the

original network. For the networks that do not demonstrate the presence of RCC (Power,

Protein and Facebook), the green line is higher, showing that the value of the eigengap
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N/W |V| |E| α µ(dv) µ(ClC) µ(BC) LCN

As 6474 12439 1.245 4.07 0.26 0.0012 9

Bible 1773 8600 1.557 10.07 0.298 0.006 11

Software 1003 4400 1.236 8.85 0.339 0.004 9

Protein 1870 2052 1.756 2.89 0.17 0.016 7

Facebook 7178 10349 2.311 2.82 0.125 0.0123 6

Power 4941 6698 2.344 2.71 0.0715 0.017 7

Table 3.6: Network statistics for the modified graphs. Note that the parameter values are
comparable to that of the original networks in Table 4.1.

increased and has a more gradual slope. We report the statistics of the modified network in

Table 3.6. The table clearly shows that our model also preserves the crucial structural prop-

erties of the original network, for e.g., the scale-free exponent α and the average degree.4

Algorithm 1: Algorithm for increasing (flag == 1)/decreasing (flag == 0) ex-

pansion property.
Input: G(V,E)

Output: E
Parameters: h, γ, flag

Sort vertices in G based on decreasing degree;1

Select the top h nodes based on degree;2

if flag == 1 then3

find E1 possible edges that could be formed among the h nodes4

else5

find E1 actual edges that are present among the h nodes6

Select Ef edges randomly from E1 where |Ef |= γ ∗ |E1|;7

if flag == 1 then E ← E ∪ Ef else E ← E − Ef return E;8

4We set the model parameter h = 30. The results are similar for h = 20 and h = 15. γ is set to 0.2
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Figure 3.15: The outcome of the modification model. The first three networks (top panel)
that originally demonstrate presence of RCC, i.e., AS, Bible and Software get transformed
to networks with no RCC. The last three networks (bottom panel) that originally do not
demonstrate the presence of RCC, i.e., Power, Protein and Facebook get converted to
networks with RCC. These plots are similar to the eigengap chart of Figure 3.6(c), except
we show the eigengap over all the shells rather than in groups. The blue (green) plot shows
the eigengap for the original (modified) network.

3.7 Theoretical insights

We now theoretically demonstrate how the three properties described in section 3.2.4 lead

to the formation of rich centrality clubs. We consider an ideal network, where the vertices

of each shell form a connected component and as per property 2, the values of α are large

enough such that each shell is an expander graph. Since an expander graph has no bot-

tleneck, or clear partition, random graphs fulfill these criteria. We therefore assume that

each subgraph, Sk induced by a shell k and its neighbors, is an Erdős-Réyni random graph,

with nk vertices and dk average degree, and the probability of connection among a pair of

vertices pk; thus, dk ≈ nkpk.

In [35], the authors prove several bounds on the average path length in a random graph

G(n, p). In particular, they state that if np ≥ c > 1, then the average distance is constant

times logn
lognp

. Using this result, we assume that the average distance between two vertices in

subgraph Sk is lognk

lognkpk
≈ lognk

log dk
.

Now consider a path between the two vertices v1 and vn, that is the sequence of vertices
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v1, v2, . . . , vx, . . . , vn−1, vn. Let core numbers of these vertices be l1, l2, . . . lx, . . . ln−1, ln.

Let lx be the highest numbered shell in this sequence. We assume that for all shortest paths

between v1 and vn, l1 ≤ l2 ≤ . . . lx ≥ . . . ln−1 ≥ ln.

This means that the shortest paths travel monotonically from a source low shell to the high-

est shell required, and then back from the high shell to the destination low shell. Note that

this assumption allows the path to remain in the same shell throughout as well. However,

paths that zig-zag from a high shell to a low shell and back to a high shell are not allowed.

This rationale is based on the fact that since lower valued shells are sparser, it is more likely

that the paths will connect through higher shells than lower shells.

With these assumptions in place we can state the following

Lemma 1. If there exists a shell kx, such that,
lognky

log dky
> ryz +

lognkz

log dkz
, for all ky < kx and

for at least one kz ≥ kx, then high centrality vertices are located in core Cx.

Proof. Let kx be the lowest numbered shell that satisfies the equation in the lemma. Con-

sider the path between two vertices v and u. If either v or u is in Cx, then the path between

them has to pass through Cx. If neither of the vertices are in Cx, we have to consider two

cases.

First case, the two vertices in the same shell ka, x > a, then on average, the distance

between them will be lognka

log dka
.

Second case, the vertices from two different shells ka and kb, x > a > b. On average the

length of the shortest path will be rba +
lognka

log dka
. This value is greater than the path simply

going through ka.

Thus for both cases, if lognka

log dka
> rax +

lognkx

log dkx
, the shortest path between any two vertices

in the graph is on average going to pass though Cx. Thus the core Cx will contain high

closeness and betweeness centrality vertices.

As per property 1, ny > nx and dy < dx, where ky < kx. Therefore the condition
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lognky

log dky
>

lognkx

log dkx
will hold for any two shells. To maintain the condition of the lemma,

we have to ensure that the distance from the steps to go from one shell to another, ryz, is

small enough. In other words, the steps to go from shell y to core z is smaller than the

difference of their average distance. We have observed that for networks with RCC, ryz,

where z is the innermost or second innermost core, the value is between 2-4. The number

of nodes in the outer shells can go upto thousands, thus easily satisfying the condition.

It might seem that because finding the eigenvalue is an expensive operation, identifying

networks with RCC would also be more expensive than simply finding the high centrality

vertices. However, note that our lemma is based on the average path per shell. This metric

can be computed in parallel for each shell, and is faster than computing the centralities over

the whole network.

3.7.1 Relation between the attack models

We now discuss how the three models are related to each other. It is easy to see that the rich

club associative model is a generalization of the core associative model. If the network has

just one single rich club, then that will be located at the core, and the two models become

equivalent. We also observe in Figure 3.9, that the uniform perturbation model is more

effective for networks with scattered rich clubs. This indicates a relationship between the

rich club assortative model and the uniform perturbation model as well.

To discover this relation, we first analytically demonstrate that if the uniform perturbation

attack is used, then the larger the size of the clique, the greater the resilience.

We have observed that with more successful attacks, the variability of the top ranking high

centrality vertices decrease (see Figure 3.16). Based on this observation we construct a

baseline graph where the variability of the values of degree, betweenness and closeness cen-

tralities is zero. For example, the class of distance regular graphs fulfills this criteria [143],

but note that other graphs, not necessarily distance regular can also be constructed with

zero variance of centralities. We then add cliques to alter the variability in the centrality

values, and analytically prove that (i) the high centrality vertices are located in the cliques,

and (ii) it is easier to disrupt a smaller size clique as compared to a larger one.
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Figure 3.16: Change of betweenness centrality value due to perturbation for top-50 high
central nodes (Network: as2).

Consider baseline graph, G (V,E) where each vertex has degree α, and the diameter of the

graph is d. We then select a set of vertices, C, and add edges such that the vertices in C

form a clique. Let this be the new graph GC .

Note that by adding a clique, the distances will only decrease from G to GC and all

new paths formed in GC will have to include at least one vertex of C. Let the distance

between two vertices a and b in graph G be given as δG (a, b). Since G is undirected

δG (a, b) = δG (b, a). For any vertex a, µa is the vertex in the clique C that is closest to x.

Lemma 2. In the graph GC , any vertex x ∈ C will have higher closeness centrality than

any vertex y ∈ V − C.

Proof. We compare the distance of y ∈ V − C and x ∈ C to another vertex z ∈ V ; z 6=
y, z 6= x.

δGC
(y, z) = δGC

(y, µy) + δGC
(µy, µz) + δGC

(µz, z)

δGC
(x, z) = δGC

(x, µx) + δGC
(µx, µz) + δGC

(µz, z)

Since x ∈ C, δG (x, µx) = 0. Therefore the difference between the distances is;

δG (y, µy) + δGC
(µy, µz)− δGC

(µx, µz)
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δG (y, µy) ≥ 1, since y is not part of the clique. The distance between any two vertices in

clique C can be either 0 or 1. If µz = µy then the difference is at least 0, otherwise the

difference is at least 1. Thus the distance of y to any vertex z is greater, or in some rare

cases equal to the distance of x to z. Thus, the closeness centrality of y is less than that of x.

Lemma 3. In graph GC , given a vertex y ∈ V − C and µy ∈ C, µy will have higher

betweenness centrality than y.

Proof. Recall that betweenness centrality of a vertex v, is given asBCG(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

,

where σst is the total number of shortest paths between s and t, and σst (v) is the to-

tal number of shortest paths between s and t that pass through v. In the baseline graph,

BCG (y) = BCG (µy).

We consider the following three cases.

Case 1: The distance between s and t remains unchanged in GC and thus the relative value

of BCGC
(y) and BCGC

(µy)is not affected for the pair (s, t).

Case 2: A path between s and t that used to go through y in G no longer goes through y

in GC . Thus BCGC
(y) is increased. Since µy ∈ C , Case 2 will never occur for µy. Thus

BCGC
(µy) ≥ BCG (µy) for the pair (s, t).

Case 3: A path between s and t that did not go through y in G now goes through y in

GC . Thus the value of BCGC
(y) is increased. However, all the new shortest paths have to

include at least one vertex from the clique C. Since µy is the clique vertex closest to y, this

path will also pass through µy. Therefore if the betweenness centrality of y increases, there

will be an equal increase in the betweenness centrality of µy.

Thus for all cases, BCGC
(µy) ≥ BCGC

(y).

Using the same rationale as the above proofs, we can show that if multiple cliques, not
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necessarily of the same size, are added to G, the centralities of a vertex not part of a clique

will be lower than the centralities of a vertex within a clique.

To disrupt the ranking of the high centrality vertices, we have to break the cliques. We

show for the uniform perturbation attack, the probability of breaking a smaller clique is

higher than the probability of breaking a larger clique.

Lemma 4. Consider a graph GC1,C2 that is built by adding two non-overlapping cliques to

the baseline graph G. Under the uniform perturbation model, the probability of removing

a vertex x in any one of the cliques is P (x). In sufficiently large graphs, if the size of clique

C1 is less than the size of clique C2, then P (a) > P (b) for a ∈ C1, b ∈ C2.

Proof. Let the degree of each vertex in the baseline graph G be α, and the total number

of edges be E. Let the size of the clique C1 be r1. The degree of the vertices in C1 is

p = α + r1 − 1. Let the size of the clique C2 be r2, and the degree of the vertices in C2

q = α + r2− 1. Also r2 > r1.

If we use the uniform perturbation model to delete the edges, then the probability of delet-

ing the r1 edges from a vertex in the clique C1, which has degree p is

DC1 =
p

E

p− 1

E − 1
. . .

p− (r1− 1)

E − (r1− 1)

.

=
p! (E − r1) !

E! (p− r1) !
=
p! (E − r1) !

E! (α− 1) !

.

Similarly the probability of selecting r2 edges from a vertex in cliqueC2, which has degree

q is

DC2 ==
q! (E − r2) !

E! (α− 1) !

.

Given that q − p = r2− r1 and (E − r1)− (E − r2) = r2− r1, the ratio DC1

DC2
is,

DC1

DC2

=
p! (E − r1) !

q! (E − r2) !



3.7 Theoretical insights 65

=
(E − r2 + 1)

(p+ 1)

(E − r2 + 2)

(p+ 2)
. . .

(E − r1)

q

If the graph has a large number of edges such that E > p + r2 or E > α + r1 + r2,

then each of the fractions of the form (E−r2+x)
(p+x)

will be greater than 1. Thus DC1 > DC2,

and the probability of disconnecting a vertex from C1 is greater than the probability of

disconnecting a vertex from C2.

Thus smaller cliques are more affected by the uniform perturbation model. Given a fixed

value of k top ranked centrality vertices, the higher the number of scattered rich clubs, the

more likely that they are to be smaller in size. Smaller the size of the rich clubs, the more

likely uniform perturbation will be effective in disrupting the network.

3.7.2 Trade off in cost and effectiveness of the attack models

The three attack models demonstrate a sliding scale of cost versus effectiveness. The most

effective model, rich club assortative perturbation, is also the most expensive to imple-

ment. In contrast, the uniform perturbation model is the cheapest and the least effective.

Moreover, applying the uniform perturbation model requires no knowledge of the network

structure, whereas to apply the rich club model one should at least have information about

the edges whose vertices are in nearby cores. We also observe that the uniform perturba-

tion and the core associative model represent the two extremes of the scattered rich clubs.

Uniform perturbation is most effective when the scattered rich clubs are very small, and

the core associative model is most effective when the scattered rich clubs form just one

dense club. An interesting future research direction would be to explore when to use which

model or combination of models, given our knowledge of network structures and limits on

computation costs.



66 Chapter 3

3.8 Summary of the chapter

To summarize, our key contributions are as follows:

• We show a novel network data categorization, where in one group of network high

central nodes are located within the inner most core and these inner most core nodes

expand out in several dense modular units in the network. We further show evidence

of rich centrality club using supervertex based network summarization and empir-

ically validate that supervertex composed of inner most core doesnot always play

pivotal role in governing connectivity in some networks.

• Through comprehensive set of experiments, we show that distinctive spectral signa-

ture emerges from networks with rich centrality clubs. Specifically the normalised

cut gradually decreases for subgraphs formed using shell volumes, as we traverse

from the inner to the outer shells. This also implies that random pairs of nodes in a

shell is dependent on the inner shell nodes for shortest paths.

• We extend our proposal of single rich clubs with the novel concept of scattered rich

clubs. We posit that high central nodes instead of organising in the inner most layers

of the network, can be scattered in dense modular units of the network. We further

develop a clique percolation based approach to discover such scattered rich clubs in

the network.

• We show that networks with rich centrality clubs are resilient against random edge

perturbation based attacks. However we propose novel targeted edge perturbation

based attacks which are effective in disturbing original rank order significantly in the

case of RCC based networks

• We also provide an edge rewiring strategy to insert RCC into a non-RCC network.

Our strategy is simple, reversible and does not alter the key global network properties

drastically. We show that this selective rewiring of connections helps in stability of

high central nodes, by the changing spectral properties.

• We provide justification of our empirical results through theoretical arguments.
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Centrality of time-varying networks

4.1 Introduction

One of the important problems in time-varying networks is predicting how their features

change with time. If this information is known a-priori using minimal computation, then

users can take appropriate action in advance to utilize such features. The most significant

among network properties are the centrality features, that are used to estimate the impor-

tance of a vertex in a network.

Information can spread more quickly when high closeness centrality vertices are selected

as the initial seeds. Similarly, vaccinating high betweenness centrality vertices, through

which most of the shortest paths pass, can reduce the spread of disease. The central ver-

tices also play an important role in spreading influence in a social network as has been ob-

served in several works [5, 27, 108, 129]. In a dynamic setting (where the network changes

over time) knowing these highly central vertices beforehand is of prime importance as it

would facilitate in developing strategies for targeted advertising or setting up infrastructure

for vaccination drives. However, this might result in expensive re-computation of short-

est paths as the network varies over time. Our goal is to develop algorithms based on the

network structure, so that such re-computations are avoided.

Current approaches focus on predicting the average centrality values of the network [89].

67
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However, note that most applications, such as the ones discussed above, require the ids of

only the top-k centrality vertices, not the values or the ranking of all the vertices in the

network. Therefore, simply predicting the average centrality over the entire network may

not be useful in a majority of the practical contexts.

In this chapter, we present a two-step algorithm for predicting the high centrality ver-
tices of time-varying networks. In the first step, we predict the overlap between the set of

high centrality vertices1 of the current time step to the set of high centrality vertices of the

future time step. In the next step, assuming that the network snapshot is already available

in time, we analyze its innermost core to find the ids of the high centrality vertices.

The rationale for our prediction method: The key to our prediction method is based on

a unique hypothesis that in many real world time-varying networks, most of the highly cen-

tral vertices reside in the innermost core. In other words, a large fraction of the shortest

paths connecting pairs of vertices in such networks pass through the innermost core; the

vertices in the periphery (and the outer shells) of the network are mostly connected via the

vertices residing in the innermost core of the network. A key contribution of our work is

that we develop a set of novel heuristics to classify networks based on the extent to which

the highly central vertices are in the innermost core. Our heuristics do not require the ex-

plicit computation of the centrality values. We also separately report our predictions for

each class of networks. We empirically demonstrate that the higher the number of high

centrality vertices in the inner core, the higher is the accuracy with which we can predict

these vertices for future time steps. For real networks that maintain this property to the

largest extent, our F1-score for prediction is 0.81 for closeness and 0.72 for betweenness.

similarly, for synthetic networks that maintain this property to the best extent, the F1-score

for prediction is 0.94 for closeness and 0.92 for betweenness.

Validation: In addition to F1-scores, we further validate our results by comparing how the

predicted and actual high centrality vertices perform in a practical context. For high close-

ness centrality vertices, we compare the time to spread a message when the high centrality

vertices are taken as seeds, and for the high betweenness centrality vertices, we compare

how the length of the diameter increases as the high betweenness centrality vertices are

1In this chapter, when we mention highly central vertices, we specifically refer to high closeness or

betweenness centrality and not other types of centralities.
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deleted from the network. For these experiments we select a set of random vertices as

control, and compare the performance of the actual high centrality vertices, predicted high

centrality vertices and the randomly selected vertices. For networks where we could pre-

dict the results with high accuracy, the effect of the original and predicted vertices are very

similar, and these results are markedly different from the effect of the randomly selected

vertices. Interestingly, for networks, where our prediction accuracy is low, the effect is

similar for closeness/betweenness centrality for all the three sets of vertices. This result

indicates that networks with low prediction accuracy do not have significantly high close-

ness/betweenness centrality vertices and therefore the prediction itself does not serve any

practical purpose. To summarize, our key contributions are;

• Develop a set of heuristics to classify temporal networks based on the extent to which

the highly central vertices are part of the innermost core (section 4.2). To perform

the classification, these heuristics do not require the explicit computation of the high

centrality vertices.

• Develop an efficient algorithm to predict the high betweenness and closeness cen-

trality vertices. To the best of our knowledge, this is the first algorithm to predict the

vertices that does not require explicit computation of the centralities (section 4.3).

• Validate our results in practical application scenarios, namely message spreading and

increasing the diameter, to show that the effect of our predicted vertices is similar to

the actual ones. For networks, where our prediction accuracy is low, we show that

even a random selection of vertices can produce same results as the actual high close-

ness/ betweenness centrality vertices. This indicates that for such networks, there are

no significantly high closeness/betweenness centrality vertices. Thus, in these cases,

prediction of high closeness/betweenness centrality vertices is of no practical use.

• Present a theoretical rationale for our algorithm.

Our condition for accurate prediction of high centrality vertices is that they are part of the

innermost core of the network. As we shall see, in some real-world time-varying networks

in our dataset, this condition holds. This condition is also true for a large number of syn-

thetically generated networks. Even for the networks where the condition only holds to a
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moderate extent, our predictions are reasonably well. We also observe that for those net-

works where the condition fails to hold, it is not really worth finding high centrality vertices

(by any algorithm) as there is no explicit ranking present in such networks. The functional

effect of the high centrality vertices is equivalent to those of a randomly selected set of

vertices.

4.1.1 Our hypothesis

We hypothesize that the high centrality vertices in many real world time-varying networks

are more likely to be located in the innermost core. As a first step, we note that if most of

the shortest paths pass through the innermost core, then the high centrality vertices would

also be part of the innermost core. Moreover, if these vertices are tightly connected to each

other, they can enhance each others’ centrality values [171]. Thus, a dense innermost core

through which most of the shortest paths pass provides us a smaller subset in which to

search for high centrality vertices.

However, not all networks have such dense innermost cores. Figure 4.3 visually contrasts a

network that has a small dense inner core (CA) to a network where the inner core is sparse

and forms the bulk of the network (FW). From visual inspection, it is clear that it is easier to

locate the high centrality nodes in the Caida network than in the network of Facebook users.

Nevertheless, explicitly computing whether a network conforms to our hypothesis is ex-

pensive since that would lead to calculating all pairs of shortest paths between the nodes

repetitively as the network changes over time. We therefore provide a set of novel heuris-

tics in the next section to classify networks based on the extent to which they conform to

our hypothesis.
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Figure 4.1: Caida network Figure 4.2: Facebook network

Figure 4.3: Visualization of the core-periphery structure with the corresponding shell
index created using Lanetvi [7]; sizes of nodes are ordered based on the degree. Note that
the Caida network has several layers of cores and and a small dense innermost core. In
contrast, the Facebook network has only three cores of which the innermost core is sparse
and predominant. Best viewed in color.

4.2 Classification of the networks

In this section we propose the following four parameters to classify the temporal networks

according to whether the high centrality vertices are within the innermost cores. Note that

each of these parameters are less computationally expensive than computing the centrality

of the vertices. Our heuristics are as follows:

• Fraction of inter-edges connected to the top core (EF): This metric is the ratio

of the number of inter edges with one end point in top core to the total number of

inter edges. The higher the fraction, the more the network will have high centrality

vertices in the top core.

• Average density of the non-top cores (CFX): This metric computes the average

density of all cores, except the top one. The lower the density, the sparser the core,

and the higher the average intra-core distance. The density of each core is computed

as ratio of the number of intra-core edges in each core by the total possible edges
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Figure 4.4: Classification of the networks according the distribution of the parame-
ters. From left to right the parameters are, (a) fraction of inter-edges connected to the top
core (EF ), (b) average density of the non-top cores (CFX), (c) the density of the top core
(ED) and (d) the overlap in the top-core at consecutive time steps (CV ). Here AS, CA, HP,
HT, SO, WK, FW and SU, given by the lines in different colors, represent the datasets. The
X-axis represents the time points and the Y-axis plots the Cumulative Distribution Function
(CDF) for each of the parameters.(Please refer to Table 4.1 for detailed description.)

between the vertices in the core. To find the average density we divide this value

by the number of cores. The lower this value the more the network will have high

centrality vertices in the top core.

• Density of the top-core (ED): We compute the density of the top-core which is the

ratio of the number of intra-core edges in the top core to the total possible edges

between the vertices in the core. The higher this value, the more the network will

have high centrality vertices in the top core.

• Top-core overlap (CV): This metric takes into account the changes in the top core

structure over consecutive time steps. We measure the overlap as the Jaccard simi-

larity between the vertices in the top cores of networks at time step t− 1 and t. The

higher the value, the greater the overlap.

We explain the classification framework based on the above parameters in the following

steps.

(A) For a set (D) of initial networks:

1. We consider the t − 1 temporal snapshots G1, G2, ..., Gt−1 ∈ D. We calcu-

late the 4 tuple heuristic for each snapshot. Hence each snapshot can now be

represented as (EF,CFX,ED,CV )
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2. We calculate the cumulative distribution function (CDF) for each parameter

from the t−1 values obtained for that parameter. For a particular parameter (say

EF ) we now have CDF for each of the initial datasets considered (Figure 4.4

shows the CDFs for the eight real world networks). Note that we compute the

CDF over a range accumulated from all the parameter values obtained from all

the previous time steps. In particular, it is not possible to compute the CDF if

multiple values of the variable are not available, thus highlighting the use of

multiple time points and consequently the dynamical properties of the network.

3. We perform hierarchical clustering on each parameter, using D-statistic as the

pairwise similarity measure between the CDFs of a particular parameter from

two different networks. We cut the dendrogram at cluster size 2, hence having

the clustering algorithm output 2 clusters (C1, C2) for each parameter.

4. If the mean value of parameter in C1 conforms more to the desirable property,

i.e., have high values forEF,ED,CV or have low value forCFX , we labelC1

as good (G) and C2 as bad (B) or vice versa. We have outlined our framework

in Figure 4.5.

(B) For each new (unseen) network:

1. Once again we compute the CDFs for each of the four parameters from the t−1

snapshots.

2. Next we obtain the similarity (D-statistic) of the CDF of a particular param-

eter with the centroid of both C1 and C2 (i.e., the traditional Rocchio tech-

nique [10]).

3. Finally, we classify the network to that class to which it is more similar (based

on the similarity with the centroid of the class.)

We use eight real world networks as the initial set and 20 synthetic networks as unseen and

classify them based on the Rocchio scheme. The category for each network are presented in

Table 4.2 and Table 4.8 for real and synthetic networks respectively. For all the parameters,

except CFX , higher value is good. For CFX , lower value is desirable. This classification

matches with the results in Table 4.2 and Table 4.8, i.e., if EF , ED and CV are high and



74 Chapter 4 Centrality of time-varying networks

Figure 4.5: Classification framework.

CFX is low then the high centrality vertices in the networks can be predicted with higher

accuracy using our scheme.

Figure 4.4 shows the distribution of the different parameters for each of the real world net-

works. The parameters for top core overlap and top core density form the most distinct

clusters. The clusters for fraction of edges to the top core, and intra-core density are not

as distinct, indicating that almost all the networks conform to our hypothesis at least to

some extent and that the size and density of the top core are the critical factors in deter-

mining predictability. The groupings for each parameter and for each network are noted in

Table 4.2 (real networks) and Table 4.8 (synthetic networks).

4.3 Algorithm for predicting high centrality vertices

Our prediction framework is composed of three steps. In the first step we classify the net-

work based on the four parameters introduced in the previous section. In the second step

we use the already computed overlap time series to predict the future overlap values using

ARIMA models. In the final step we identify high centrality vertices in the network at the

next time step.

• Step 1: Classifying the networks based on the parameter values across time
steps:
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Algorithm 2: Calculate the classification parameters.
Data: Gt−1(V,E) , graph at time step t− 1; lk set of top core vertices at time (t− 2)

Result: EF, CFX, ED, CV

c[v]←1

FindCore(G) // Returns core number of each vertex v ∈ G ;

Cm ← MaxCore(c) // Returns max core number from c ;2

Lk ← {} ;3

N(v)← neighbors of v ;4

tempV [Cm], tempE[Cm], tempD[Cm]← [0] ;5

for ∀v ∈ V do6

for u ∈ N(v) do7

if c[u] 6= c[v] then8

if (c[u] == Cm ∨ c[v] == Cm) then9

em ← em + 1 ;10

ei ← ei + 1 ;11

EF ← em/ei ;12

for ∀v ∈ V do13

for u ∈ N(v) do14

if c[u] == c[v] then15

tempE[c[u]]← tempE[c[u]] + 1;16

tempV [c[u]]← tempV [c[u]] + 2;17

for u < Cm do18

tempD[u] = 2 ∗ tempE[u]/(tempV [u] ∗ (tempV [u]− 1)) ;19

for u < Cm − 1 do20

d← d+ tempD[u] ;21

CFX ← d/(Cm − 1) ; ED ← tempD[Cm] ;22

for ∀v ∈ V do23

if c[v] == Cm then24

Lk ← Lk ∪ v;25

CV ← Jaccard(lk, Lk);26

return EF, CFX, ED, CV;27
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Algorithm 3: Predict top central vertices
Input: Gt(V,E) , graph at time step t, Nv = |V |
Output: T[k]

temp[Nv]← [0];1

m, j ← 0;2

c[v]← FindCore(G);3

Cm ← MaxCore(C) // Returns max core number from c;4

for i← 1 to Nv do5

if c[i] == Cm then6

temp[j]← i;7

j ← j + 1;8

for i← 1 to k do9

n← MDVid(temp) // Max Degree vertex id;10

T[m++]← temp[n] ;11

temp[n]← 0;12

return T ;13

Our first step is to classify the networks to see whether the vertices with high central-

ity are consistently located in the top core over all the t time steps. To obtain this clas-

sification, we compute the parameters, defined in section 4.2, for networks at every

time step from 1 to t. The complexity for computing the parameters are as follows:

To compute these parameters, we first need to compute the core numbers of the ver-

tices. We do this using the function FindCore (see line 1, Algorithm 2), which

implements the algorithm presented in [12] and has a complexity of O(|E|), where

|E| is the number of edges.

For computing fraction of inter core edges connected to the top core, i.e., EF, (lines

6–12, Algorithm 2), we need to iterate over all edges once and keep count of the

number of edges where the end points belong to different cores and at least one of

them is part of the top core. Thus the complexity is O(|E|).

To compute the density of each core, we sum the number of the edges whose end-

points are both in that core and then divide this sum by the total number of possible
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edges in the core. Using these values we can compute the average density of all the

non-top cores, i.e., CFX, as well as the density of top core, i.e., ED, (lines 13-22).

Once again computing these parameters requires us to go through all the edges, and

thus has complexity O(|E|).

The overlap between the top core vertices, CV, in the networks over two consecu-

tive time steps is computed using Jaccard similarity (see Algorithm 2). Finding the

vertices in the top core, requires us to go over all the vertices and identify their core

numbers (complexity O|E|). The complexity of computing the Jaccard similarity is

linear to the number of vertices in the top core.

Once we obtain these parameters for all the networks over the time steps 1 to t, we

classify each network by the technique described in the previous section. Based on

the classification, the network might fall in the good class G (i.e., majority or at least

equal number of parameters fall in the good class) or in the bad class B. Note that

this classification, requires information from not just one time step, but from multi-

ple time steps thus establishing how our framework is dependent on the dynamical

properties of the network. If the network falls in classG we proceed to Steps 2 and 3.

• Step 2: Estimating overlap among the top central vertices: After analyzing the

networks from time steps 1 to t, consider the network Gt+1 at time step t+ 1. Even

if the network is not available, we leverage information about the Jaccard overlap

between the top core vertices for consecutive time steps from 1 to t, and use the

autoregressive-integrated-moving-average (ARIMA) algorithm [18] to estimate the

overlap in top cores of Gt and Gt+1.

• Step 3: Identifying the top central vertices: If the network is classifed into class

G (good), then we identify the top central vertices in the new network Gt+1, using

Algorithm 3.

We identify the vertices in the top core of the new graph using the FindCore func-

tion (line 3, Algorithm 3). Then we implement a m-search algorithm to extract the

m highest degree vertices (lines 5-12, Algorithm 3) of the graph, that are in the top

core. These vertices are marked to be the high centrality vertices.

If the network falls in the class B, a random selection of nodes from the network and the
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Figure 4.6: Prediction framework.

actual high central nodes perform equivalently with respect to path based centrality (sub-

stantiated by the validation results in section 4.6.)

We now provide further details on the most crucial steps 2 and 3 in the rest of this section.

4.3.1 Estimating the extent of overlap

For a given temporal network (G) with network snapshots G1, G2, . . . observed at times

1, 2, . . ., we calculate for initial few time steps the top (5) 10 central vertices based on be-

tweenness and closeness. The overlap ltc (closeness) and ltb (betweenness) are calculated as

the Jaccard overlap between the top (5) 10 central vertices between network snapshots Gt

and Gt+1. Note that this is calculated for the initial few time steps to eliminate the cold

start problem. We next represent ltc (ltb) as a set of points ordered in time or equivalently a

time series. This representation allows us to leverage time series forecast models to predict

the values of lc and lb at a future time step. Specifically, we use the ARIMA model to fit

the resulting time series. On fitting an ARIMA(p,d,q) model to a time series we obtain an

auto-regressive equation of the form -
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yt = α1yt−1 + · · ·+ αpyt−p + β1et−1 + · · ·+ βqet−q + c

where yt represents the value of the time series at time t, et, et−1 . . . are the white noise

terms and αi and βi are parameters of the model. To summarize, given the centrality over-

lap values till t− 1, we are able to predict it at time t. If the top central vertices are known

for Gt−1 and we know the extent of overlap among top central vertices between Gt−1 and

Gt (which we predict using our proposed method), we can roughly estimate the top cen-

tral vertices in Gt given the predicted overlap value is high and the prediction error is low.

Note that for the above technique to work, the network Gt itself is not required. We show

later (section 4.5) that our method is indeed able to predict the overlap values for certain

networks with very low error.

4.3.2 Identifying the top central vertex

The first step of the proposed prediction scheme allows for estimating the extent of overlap

among the top central vertices between the two consecutive snapshots of the network. In

this step we further refine the prediction when the network Gt is available. Specifically, in-

stead of explicitly calculating the centrality values, we use the algorithm described in [12]

to obtain the core-periphery structure and, thereby, identify the vertices in the top core. Our

analysis in section 4.7, suggests that these vertices are the most likely candidates for being

the high central ones in the network. To obtain the top m central vertices in the system,

we rank the vertices in the top core based on their degree and filter out the top m vertices

(see Algorithm 3). Note that this step has complexity O(|E|) (for computing the core and

ranking the top-core vertices by degree), which is significantly less than O(|V |∗|E|), the

complexity for computing all the closeness and betweenness centrality vertices and then

ranking them.

The innermost core hence acts as a ‘container’ for the high central nodes in certain class of

networks which we explain in Section 4.7. We also empirically show this by performing

the following experiment: instead of predicting the high degree nodes from within the top

core as the high central nodes we directly predict the globally highest degree nodes agnos-

tic of which core they belong to. This results in drastically poorer F1-score values as noted
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in Table 4.5.

We also compare the results obtained from our prediction algorithm against existing algo-

rithms for forecasting high centrality nodes in temporal networks [89]. Note that all these

schemes are compute intensive as they require explicit computation of the centrality values

in all the earlier time steps for prediction in the current time step unlike our approach. For

both closeness and betweenness centrality our results are superior compared to existing

state-of-the-art in almost all cases of the cases.

We illustrate the complete flowchart of our prediction framework in Figure 4.6. Note that

all the subsequent steps of prediction are dependent on the initial classification step which

is completely regulated by the temporal dynamics of the network under consideration.

In section 4.5, we show that our proposed method is indeed able to identify a large frac-

tion of central vertices in the network without explicitly calculating the centrality values

(betweenness and closeness) for each vertex.

4.4 Experimental setup

In this section we describe the networks in our test suite. We consider 8 diverse type of

real world networks. We also consider 20 synthetic networks of varying numbers of nodes,

edges and temporal snapshots and generated using two different tools – Musketeer [65] and

Dancer [14].

4.4.1 Test suite of real-world networks

We consider a diverse set of benchmark networks of various sizes and over discrete timescales.

The networks are collected from public repositories made available at [95, 99]. Our net-

works can be grouped into three different categories according to the application domain.

Given below is a brief description of the categories, the networks in them, and how we

obtained the time series network from the data. The sizes of the networks are given in
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Table 4.1.

• Autonomous systems network: The Internet is sub-structured as interconnected

subgraphs of highly connected routers. These subgraphs are known as autonomous

systems (AS). Each AS exchanges traffic with neighbors (peers) using BGP (Border

Gateway Protocol). Here we use two example networks; both were created using

BGP table snapshots and made publicly available.

AS: The first dataset (AS) was collected from University of Oregon Route Views

Project and it contains 733 daily data traces between autonomous systems which

span an interval of 785 days from November 8 1997 to January 2 2000.

CA: The second dataset was collected by Center for Applied Internet Data Analysis

(CA) from January 2004 to November 2007 and it comprises anonymized interaction

of ISP’s.

• Citation network: This type of network connects two papers if one paper cited the

other. Although the links are directed, for purpose of our experiments we consider

them to be undirected.

We use citation data from two different research topics in high energy physics. For

both these networks, every paper is timestamped by the submission time to the

archive. We also have a list of papers which are cited by a submitted publication.

Based on this information, we created an aggregated growing network in terms of

months and considered each network as a distinct snapshot. For citation network a

node once added is not deleted. This is not the case for the other classes of networks.

HepPh (HP ): (High Energy Physics Phenomenology) is a citation graph from the

e-print arXiv and covers all citations within a dataset of 34,546 papers with 421,578

edges. Citation between paper i and j, is represented as an edge. The data covers an

almost complete set of papers from January 1993 to April 2003.

HepTh (HT ): (High Energy Physics Theory) is a citation graph similar to HP, with

27,770 papers with 352,807 edges. The data focuses on papers from January 1993 to

April 2003.

• Social communication networks: These networks are of interactions via different

types of social media. We study four different networks with each individual edge ac-
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companied by unique timestamp. For all these networks we aggregated all the edges

appearing in the same month and created a single temporal snapshot of the network

per month.

StackOverflow (SO): On stack exchange web sites, users post questions and receive

answers from other users, and users may comment on both questions and answers. A

temporal network is derived by creating an edge (u, v, t) if, at time t, user u: (1) posts

an answer to user v’s question, (2) comments on user v’s question, or (3) comments

on user v’s answer.

Facebook Wall (FW ): The edges of this dataset are wall posts between users on

Facebook located in the New Orleans region. Two users are connected if they post

on the same wall.

Wiki Talk (WT ): This dataset represents edits on user talk pages on Wikipedia. An

edge (u, v, t) signifies that user u edited user v’s talk page at time t.

Superuser (SU ): This dataset is derived from question answer site Superuser which

exists for computer enthusiasts. As in the case of StackOverflow, an edge (u, v, t)

exists if, at time t, user u: (1) posts an answer to user v’s question, (2) comments on

user v’s question, or (3) comments on user v’s answer.

4.4.2 Test suite of synthetic networks

We also consider 20 synthetic networks generated using the multi-scale network

generation tool Musketeer [65] and the dynamic attributed networks generation tool

Dancer [14]. We generate several temporal snapshots of each network with various

core structures to present additional prediction results and, thereby, further strengthen

our hypothesis.
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Network Nodes Unique Edges Temporal Edges Time Span
AS 7716 27183 57,05405 732

CA 31255 111564 54,85410 120

HP 34564 4,21578 4,21578 124

HT 27770 3,52807 3,52807 124

FW 46952 274,086 876,993 48

SU 194,085 9,24886 1,443,339 92

WT 1,140,149 3,309,592 7,833,140 73

SO 2,601,977 36,233,450 63,497,050 92

Table 4.1: Test suite of real world networks used for our experiments. For AS and CA the
time span is measured in days, for all others in months. Combined entire edge stream for
any dataset comprises the temporal edges; unique edges are temporal edges with duplicates
removed.

4.5 Empirical results

In this section we present the empirical results to demonstrate the effectiveness of our pre-

diction algorithms as proposed in section 4.3.

4.5.1 Results on real world networks

Our prediction scheme consists of two steps and we evaluate each of them separately.

Extent of overlap

We measure the effectiveness of the prediction scheme using cross-validation technique.

More specifically we consider each network and predict the overlap at different time steps

for both betweenness and closeness. If for a given time step t, the original overlap value is

ot and the predicted value is pt, we define the error in prediction errort as

errort = |ot−pt|
ot
∗ 100
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Note that for this prediction we assume that the actual overlap values for a certain time

stretch till t − 1 is available. In our experiments this time stretch has been set to 20 time

steps until t− 12.

In Table 4.2 we present, along with the mean original overlap values, the average and stan-

dard deviation of the error percentage across all the time steps for each dataset for both

betweenness and closeness centrality. We present results considering top 10 high closeness

and betweenness centrality vertices. However, our scheme also works very well for even a

much more restricted set of even five vertices (see Table 4.2)3. We observe that the error is

very low for the networks in GGGG (all parameters good) category (AS, CA) while those

in BBBB (all parameters bad) category (WT, FW, SU) show much higher error rates.

Comparison with other time series models: We further look into other models of time

series prediction (AR, MA and ARMA in specific) and mean prediction error (both be-

tweenness and closeness) for these models are reported in Table 4.3. For networks in

GGGG category, these simpler models are able to predict the extent of overlap with very

low error but their efficiency reduces as we move toward the other classes of networks.

Table 4.2: Classification as well as the prediction performance for the datasets used for
evaluation. Each dataset is classified as a four tuple (EF,CFX,ED,CV ) (column 1)
with G representing good and B representing bad. Mean (µ), std. dev. (σ) are reported
for both prediction error and F1-score (columns 3 to 8). The categories are colored as per
the groups they belong. Note that the higher the number of Gs in the category, the more
accurate the prediction results.

N/w Category N/w Name Mean overlap
Close. Pred.
(top 5, µ, σ)

Bets. Pred.
(top 5, µ, σ)

Close. Pred.
(top 10, µ, σ)

F1-score
(top 10, µ, σ)

Bets. Pred.
(top 10, µ, σ)

F1-score
(top 10, µ, σ)

GGGG AS 0.79 .62,10.61 7.78,10.86 5.69,6.37 0.81,0.06 6.97,7.68 0.72,0.08

GGGG CA 0.82 11.68,26.82 3.59,5.67 8.76,6.02 0.77,0.08 9.17,6.47 0.64,0.07

GGBG HT 0.56 12.52,11.71 20.79,16.10 26.96,17.44 0.42,0.35 20.74,14.86 0.52,0.30

GGBG HP 0.43 26.76,17.44 20.74,14.86 11.64,5.76 0.42,0.33 14.22,11.23 0.46,0.29

BBBG SO 0.29 34.92,33.39 45.30,38.48 27.96,21.69 0.35,0.26 26.15,24.72 0.39,0.30

BBBB WT 0.05 47.10,36.56 59.84,43.36 41.77,31.33 0.32,0.17 36.55,28.70 0.31, 0.22

BBBB FW 0.09 131.89,148.42 169.57,158.51 109.90, 92.39 0.24,0.25 56.19, 34.95 0.20,0.19

BBBB SU 0.03 44.45,40.14 167.25,130.42 147.06,106.53 0.02,0.09 32.58,40.14 0.18,0.21

Prediction using previously predicted values: Note that in the experiments discussed
2We tried with other stretches of size 15, 25 etc. The results do not seem to be affected by such minor

variations. Ideally this size should not be too large thus consuming a lot of data for prediction, nor it should

be too small thus having too few points to correctly predict. Through experimentation, we find that a size

close to 20 strikes an ideal balance.
3Note that if we keep increasing the number of top vertices, the prediction results can only get better.

Through experiments, we observe that small numbers like 5 and 10 are judicial choices.
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Table 4.3: Prediction performance of AR, MA and ARMA time-series prediction models
across all the datasets. Both mean (µ) and std. dev. (σ) are reported in each case.
Predictions are made considering top 10 central vertices.

AR MA ARMA

Datasets BC(µ, σ) C lC(µ, σ) BC(µ, σ) C lC(µ, σ) BC(µ, σ) C lC(µ, σ)

AS 7.72, 10.75 6.93, 12.37 7.58, 10.01 6.37, 9.53 7.48, 10.16 6.45, 10.37

CA 10.78, 8.82 9.26, 6.13 10.45, 9.11 9.15, 6.17 10.56, 8.97 9.23, 6.12

HT 21.72, 12.65 27.58, 11.09 22.15, 11.71 28.56, 19.21 22.67, 14.63 26.82, 14.32

HP 19.73, 14.97 26.96, 17.44 21.31, 15.29 24.37, 13.35 20.41, 14.98 25.56, 18.14

SO 35.02, 33.30 33.62, 32.46 34.92, 33.39 32.36, 31.29 34.56, 32.42 32.12, 32.62

WT 62.09, 43.81 45.86, 35.98 60.54, 45.79 44.63, 35.64 60.55, 44.39 44. 56, 34.88

FW 135.48, 122.68 241.68, 215.57 132.58, 123.45 163.68, 149.42 132.26, 122.83 157.70, 150.34

SU 44.59, 43.49 167.25, 145.42 41.16, 38.23 169.26, 143.45 45.97, 44.42 166.52, 141.78

above, at each point of prediction (t) we consider the original values of the series between

t − 1 and t − 20. We further explore the case where instead of using the original values

we use the predicted values. More precisely, for predicting the values at point t, we use the

predicted values between t− 1 and t− 20. Note that to avoid cold start problem we use the

original values for the first point of prediction but as we move along we keep on using the

predicted values instead of the original ones.

Consequently, we observe that the prediction error increases drastically in case of FW and

SU while for AS and CA, the effect is negligible (see Table 4.4). We report the results

considering the top 10 vertices; however, the results considering five vertices show exactly

similar trend. This once again demonstrates that our classification can identify networks

where high centrality vertices can be predicted accurately.

Table 4.4: Percentage error in prediction (mean(µ), std. dev. (σ)) for all the datasets using
predicted values repeatedly for prediction. The results are reported considering top 10
central vertices.

Dataset AS(µ, σ) CA(µ, σ) HP(µ, σ) HT(µ, σ) SO(µ, σ) WT(µ, σ) FW(µ, σ) SU (µ, σ)

CC 6.30,7.37 13.02,11.25 14.56,10.21 32.46,30.77 37.58,35.07 76.40,91.85 158.86,121.21 172.16,114.23

BC 8.21,13.30 10.92,16.12 25.91,14.29 19.54,12.48 32.98,25.45 44.42,28.57 73.66,30.95 41.02,26.27

Identifying top central vertices

Once the network has arrived in time, we further refine our prediction to identify exactly the

top 10 central vertices based on betweenness and closeness centrality values. We further
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obtain the predicted set of top central vertices based on the prediction scheme described

in section 4.3.2. To measure the effectiveness of our scheme we compute the F1-score

between the predicted and the original set. We repeat the result for each time step and the

average F1-score as well as its standard deviation are reported in Table 4.2. The results

are separately reported for betweenness and closeness centrality. We again observe that the

best prediction result is obtained for the networks in theGGGG category. For the networks

in the BBBB category the obtained F1-score is the least. Once again, while we report re-

sults considering the top 10 vertices, the results for the top five vertices show an exactly

similar trend.

4.5.2 Necessity of computing the core

At this point one might question whether or not computing the innermost core is indeed

required. We posit that the innermost core acts as a ‘container’ for the high central nodes

in the predominantly G class of networks. In order to show the utility of the innermost

core computation, we perform the following experiment: instead of predicting the high

degree nodes from within the innermost core as the high central nodes we directly predict

the globally highest degree nodes agnostic of which core they belong to. This results in

drastically poorer F1-score values as noted in Table 4.5.

4.5.3 Comparison with baselines

In this section we compare our method with three existing baselines taken from [89]. Here

the authors estimate the centrality scores of nodes at a future time step t using r previous

centrality scores. However, these baselines require that all the nodes be present at all time

points. Note that this is not the case for our datasets. Hence to give full advantage to the

baseline models, we choose r >> 1 so that we can obtain a non-zero average centrality

value for each node in the network (even though it does not appear at all time points). For

readability we briefly describe the three baselines below. For the first baseline – Uniform –

the authors estimate centrality of a node at time step t by taking an uniform average of the

node’s centrality in r previous time steps. In the second (W1) and third (W2) baselines the
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centrality of a node at time step t are calculated as weighted averages of the r time steps.

For W1, the weights of the previous r centrality values go as (1
d
) where d is the distance of

the prediction point t from the previous time point being considered. For W2, the weights

of the previous r centrality values go as ( 1√
d
) where d is again the distance of the prediction

point t from the previous time point being considered. Note that the maximum value of

d is r. Note that all these schemes are very compute intensive, unlike our approach, as

they require explicit computation of the centrality values in all the r earlier time steps for

prediction in the current time step t. In Tables 4.5 and 4.6 we compare the F1-scores of our

prediction algorithm with the above baselines for closeness and betweenness respectively.

We outperform the baselines in almost all cases.

Table 4.5: F1-score results for the predicted top-10 central nodes for closeness averaged
over multiple temporal snapshots. Mean (µ) and std. dev. (σ) of results are reported and
the obtained results are compared against the existing baselines. The value of r is set to
20. The best results are marked in bold.

Networks
{F1-score Close (µ, σ)

(Our method: High degree from core)}

{F1-score Close (µ, σ)

(Global degree )}

{F1-score Close (µ, σ)

(Uniform)}

{F1-score Close (µ, σ)

(W1)}

{F1-score Close (µ, σ)

(W2)}

AS 0.81,0.08 0.24,0.08 0.74,0.05 0.75,0.09 0.75,0.08

CA 0.77,0.08 0.1,0.03 0.73,0.08 0.74,0.07 0.74,0.09

HT 0.42,0.3 0.12,0.08 0.19,0.03 0.18,0.12 0.14,0.09

HP 0.46,0.29 0.07,0.08 0.23,0.14 0.0,0.0 0.0,0.0

SO 0.39,0.22 0.26,0.31 0.21,0.15 0.21,0.15 0.23,0.15

WT 0.31,0.19 0.15,0.11 0.25,0.16 0.26,0.15 0.26,0.15

FW 0.24,0.19 0.21,0.16 0.13,0.14 0.07,0.11 0.07,0.11

SU 0.02,0.21 0.007,0.19 0.04,0.024 0.02,0.04 0.02,0.04

Table 4.6: F1-score results for the predicted top-10 central nodes for betweenness
averaged over multiple temporal snapshots. Mean (µ) and std. dev. (σ) of results are
reported and the obtained results are compared against existing baselines. The value of r
is set to 20. The best results are marked in bold.

Networks
{F1-score Bets (µ, σ)

(Our method:High degree from core)}

{F1-score Bets (µ, σ)

(Global degree )}

{F1-score Bets (µ, σ)

(Uniform)}

{F1-score Bets (µ, σ)

(W1)}

{F1-score Bets (µ, σ)

(W2)}

AS 0.72,0.08 0.24,0.08 0.69,0.05 0.7,0.09 0.68,0.08

CA 0.64,0.08 0.1,0.03 0.59,0.08 0.61,0.07 0.61,0.09

HT 0.46,0.3 0.12,0.08 0.08,0.03 0.14,0.12 0.14,0.09

HP 0.52,0.29 0.07,0.08 0.16,0.18 0.06,0.11 0.06,0.11

SO 0.39,0.22 0.26,0.31 0.32,0.19 0.21,0.15 0.28,0.15

WT 0.31,0.19 0.15,0.11 0.29,0.16 0.26,0.15 0.3,0.15

FW 0.2,0.19 0.21,0.16 0.13,0.14 0.07,0.11 0.13,0.11

SU 0.18,0.21 0.07,0.19 0.14,0.024 0.02,0.04 0.11,0.17

4.5.4 Experimental evaluation of computational complexity

We also estimate the amount of time required to actually find the high central nodes (using

traditional shortest-path based techniques) for the real world networks where the prediction

accuracy (F1-score) is high. We report these results in Table 4.7, which show that the time
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required to predict node ids with high centrality (inclusive of the time required to compute

the classification parameters) is substantially low compared to actually finding them.

Table 4.7: Experimental evaluation of the computational complexity for prediction
and parameter calculation. Evaluation was done on a workstation desktop running 64bit
Ubuntu 14.04 with Intel Xeon E312xx family processor and 32GB RAM.

Network Time (secs) Time (secs) Time (secs)
Traditional method Classification parameters Prediction method

AS 34.19 4.23 1

CA 1946.2 5.67 2

HP 271 4.89 1

HT 84 3.11 1

4.5.5 Results on synthetic networks

We further evaluate our classification and prediction frameworks on a set of 20 synthetic

networks of different sizes, different core structures and different number of temporal snap-

shots generated using two network generator tools – Musketeer [65] and Dancer [14].

While N5, N6, N7, N12 have been generated by the Dancer tool, the remaining networks

have been generated by the Musketeer tool. For all the 20 new networks, we report the

number of temporal snapshots and the number of nodes and edges in the largest snapshot

in Table 4.8. For each network, we first obtain the cumulative distributions corresponding

to all the four parameters (EF,CFX,ED,CV ) by estimating these values for a certain

number of time steps. Since we already have the two well-defined clusters from the 8

real datasets and their corresponding centroids, we simply calculate the distance of the

distribution using D-statistic from the two centroids and assign the network to the clus-

ter corresponding to the nearest centroid (see Rocchio classification [10]). This scheme

enables us to avoid re-clustering every time a new dataset is available.

As a following step, likewise real world networks, here also we predict the overlap val-

ues and the exact nodes. We report the corresponding error percentages and F1-scores

in Table 4.8. Once again, as observed earlier, the results are best for the GGGG class of

networks.
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Table 4.8: Results for the test suite of synthetic networks generated by the Dancer tool
(N5, N6, N7, N12) and the Musketeer tool (remaining networks). Average error in
predicted overlap as well as the mean F1-score of the predicted top-10 central nodes
averaged over multiple temporal snapshots is reported in terms of mean(µ) and std. dev.
(σ). Networks are grouped with respect to the class they belong to.

Network
Name

Nodes Edges Time steps
Bet. overlap (µ, σ)

pred. err.
Close. overlap (µ, σ)

pred. err.
F1-score (µ, σ)

Bet.
F1 Score (µ, σ)

Close.
Network
Category

N1 6437 16936 720 14.71, 13.38 17.78,17.31 0.73,0.10 0.82,0.09 GGGG

N2 4432 8462 720 13.78,12.22 14.67,13.75 0.79,0.09 0.81,0.08 GGGG

N3 39545 12290 120 24.40,18.07 28.39,20.95 0.78,0.09 0.67,0.11 GGGG

N4 22871 44566 120 26.22,17.51 27.19,19.09 0.92,0.07 0.75,0.10 GGGG

N5 2782 170037 50 10.28,6.67 12.6,8.73 0.89,0.08 0.94,0.01 GGGG

N6 1315 5136 50 10.54,4.62 13.17,6.19 0.54,0.09 0.71,0.13 GGGB

N7 10316 67949 50 34.11,25.52 15.57,19.97 0.44,0.26 0.82,0.26 GGGB

N8 25801 301995 120 22.09,24.15 22.26,21.35 0.21,0.21 0.31,0.25 GGBG

N9 21021 204460 120 18.74,19.08 28.54, 25.72 0.22 ,0.20 0.34,0.29 GGBG

N10 15662 128463 82 30.45,24.71 41.68,30.40 0.38,0.26 0.45,0.29 GGBG

N11 12832 91984 82 33.88,24.81 34.97,26.03 0.4,0.28 0.47,0.33 GGBG

N12 3525 194655 50 21.65,14.25 27.61,10.91 0.58,0.09 0.37,0.12 GGBB

N13 207177 624796 90 30.09,27.90 43.63,30.33 0.56,0.11 0.45,0.12 BBBG

N14 164574 438655 90 35.09, 27.90 43.6,30.33 0.41,0.18 0.39,0.12 BBBG

N15 73499 166774 65 21.82,28.35 24.33,26.28 0.28,0.15 0.31,0.02 BBBB

N16 55681 111188 65 35.18,30.89 11.90, 29.83 0.33,0.18 0.36,0.19 BBBB

N17 19591 28431 48 112.34,75.96 119.90,138.66 0.22,0.24 0.28,0.27 BBBB

N18 15403 20063 48 99.61,70.48 78.68,62.60 0.19,0.23 0.23,0.27 BBBB

N19 8472 14107 90 52.54,70.68 78.58, 62.60 0.27,0.16 0.13,0.19 BBBB

N20 6758 9895 90 51.54,70.69 50.59,76.21 0.31,0.19 0.12,0.21 BBBB

4.6 Validation

In this section we demonstrate that the behavior of our predicted high centrality vertices

is very similar to the actual high centrality vertices in a practical context. We select one

representative example from two extreme classes of networks (AS, category GGGG and

WT, category BBBB) and show that for those which conform well to our hypothesis, the

predicted high central vertices and the actual high central vertices behave similarly, while

for those which do not conform well, any random selection of vertices behaves similar to

the actual high centrality vertices.
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4.6.1 Validation for closeness centrality

To validate for the closeness centrality, we obtain the top 10 high central vertices, the top 10

predicted high central vertices and 10 random vertices from the graph Gt, the tth snapshot

in the time series. We use the vertices from each set as seeds to disseminate a message in

the network. At each iteration a seed vertex u propagates its message to all its neighbors,

and these new vertices who just received the message is appended into the seed set. We stop

the iteration when all the vertices have received the message. We perform this experiment

for all the networks in the time series and report the results in Figure 4.9.

For the AS network, the actual top central vertices are the fastest propagator of the message

in the network, and this trend remains consistent in all the time steps. Our predicted top

central vertices almost always show similar behavior to the actual vertices. The randomly

selected vertices, in contrast, take longer to spread the message. For the WT network,

however the trend from the actual, the predicted, and the random vertices are very similar

qualitatively (and quantitatively as well) to one another.

4.6.2 Validation for betweenness centrality

In order to validate for betweenness centrality we posit that since high fraction of shortest

paths should pass through the high betweenness vertices, removing them would increase

the diameter by a significant margin. We obtain the actual top 10 betweenness centrality

vertices, the top 10 predicted vertices and a set of 10 random vertices. In each case, we

remove these vertices from the network and calculate the diameter.

For the As network, the removal of the actual top 10 betweenness centrality vertices leads

to the larger diameter and the size is very similar to that obtained for the predicted high be-

tweenness vertices. Removing random vertices affects the diameter the least and is much

lower than the other two above cases. For the WT network, the effects on the diameter due

to removal of the actual top, the predicted top as well as the random vertices are the same.

This indicates that the betweenness centrality values in a network like WT are very uniform

across vertices and therefore selecting high betweenness central vertices are of not much
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advantage in the practical context.
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Figure 4.7: AS network
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Figure 4.8: WT network

Figure 4.9: The left panel shows validation results for AS network and the right panel
for the WT network. Left: Time for spreading a message with high closeness centrality
vertices as initial seeds. Right (betweenness): The diameter size after removing high
betweenness centrality vertices. Color online.

4.7 Theoretical insights

We introduce the core connectedness (CC) property to formalize our hypothesis and to

quantitatively distinguish between the networks whose high centrality vertices are in a

small and dense innermost core from those where this property does not hold.

Defining core connectedness: Consider a graph G with a core-periphery structure. The

shells are consecutively numbered as S1, . . . , Si, Si+1, . . . , Smax, where S1 is the outermost

shell and Smax is the innermost shell. For ease of expression we will use shell numbers

interchangeably with their integer values, i.e. Si − Sj to denote the difference i− j.

We define a path between two specified vertices as a sequence of alternating vertices and

edges where no vertex is repeated. The shortest path (distance) is the smallest such se-

quence. We denote the length of the distance between two vertices v and u as Pv→u. If

there is no path between v and u then Pv→u = ∞. For each pair of vertices v and u we

obtain the following two paths; (i) The shortest path between v and u, with the constraint

that the sequence contains at least one vertex from Smax. The length of this path is denoted

as Pmax
v→u . (ii) The shortest path between v and u, with the constraint that the sequence does

not contain any vertex from Smax. The length of this path is denoted as PO
v→u. Let the
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length of the shortest path between v and u, without any constraints be PX
v→u.

Given these definitions at least one of the paths lengths , PO
v→u or Pmax

v→u (but perhaps not

both) would be equal to PX
v→u.

We define a core connected (CC) network is one where Pmax
v→u ≤ PO

v→u for v, u ∈ V ,

(v, u) 6∈ E and Pmax
v→u 6=∞.

In other words, in a core connected network, if two non neighboring vertices v and u, have

a path through the innermost core then that path is the shortest path between them. An

example of a core connected network is given in Figure 4.10.
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Figure 4.10: Example of a core connected network. (color online) The network has three
shells. Lengths of paths between all non-neighboring vertices that pass through shell 3 are
also the absolute shortest between them. Example Pmax

C→E=4 while PO
C→E=6. Color Online.

For networks that are core connected, the CC strength of a network can be computed as

the number of paths that pass through the core to the total number of paths. It is easy to

see that the higher the CC strength, the higher the likelihood that path-based high centrality

vertices will be in the innermost core.

Condition for core connectedness We now present the structural properties that facilitate

core connectedness. Before we do so, we define the following terms;

• Inter-core edges: An edge (v, u), such that v ∈ Si and u ∈ Sj and i 6= j. Example;

Edges (C, G), (J, S) in Figure 4.10.

• Intra-core Edges: An edge (v, u), such that v ∈ Si and u ∈ Si. Example; Edges (G,

H), (S, T) in Figure 4.10.
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• Border Vertices: Vertices that are end points of inter-core edges. Example; Vertices

C, G, J, S in Figure 4.10.

• Maximum distance to border vertices (dt): The most number of hops required for a

vertex in shell St reach a border vertex in the same shell. Example; In Figure 4.10,

shell 1 has d1 = 2 for the path from A to C, shell 2 has d2 = 1, for the path from N

to L, shell 3 has d3 = 1, for the path from S to T .

• Diameter of shell (ft): The diameter of the subgraph induced by the components in

shell St. If there are multiple components the longest diameter is selected. Example;

shell 1 has f1 = 2 for the path from A to C, shell 2 has f2 = 4, for the path from G

to K, shell 3 has f3 = 1, for the path from S to T .

• Minimum distance in shell (gt): The smallest distance between two non-neighboring

vertices in the subgraph induced by the components in shell St. If there are multiple

components the smallest path is selected. The smallest value of gt among all shells

is glow. Example; shell 1 has g1 = 2 for the path from A to C, shell 2 has g2 = 2, for

the path from G to I , shell 3 has g3 = 0, as there are no non-neighboring vertices in

this shell.

• Inter-edges to innermost shell (It): The fewest number of inter-edges traversed to go

from shell St to Smax. The endpoint vertices in each shell is selected to minimize

this values. The largest value of It over all shells is denoted as Ihigh.

Given these parameters, we posit that a network is core connected if 2Ihigh+2Σt=max−1
t=i dt+

fmax ≤ glow (Condition C1).

To show how this leads to core connectedness we first observe that the length of the path

from vertex v to u comprises of the following factors; (i) number of inter-edges traveled,

(ii) number of hops at each shell to border vertices and (iii) number of hops at each shell

to non-border vertices.

Upper bound on paths through Smax: We now consider the length of the path from v to u

that passes through Smax. This is given by the length of the path from v to any vertex in

Smax plus the length of the path from u to any vertex in Smax, and the length of the path

connecting these two vertices that were reached in Smax. For example, the path from A
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to F in Figure 4.10 comprises of the path from A to S, the path from F to R, and the path

connecting S to R.

Note, given the properties of the graphs under consideration, while going from an outer core

to the innermost core we only need to pass each intermediate shell at most once. Moreover

in the intermediate the shells we will only travel to border vertices.

Thus, given v ∈ Si and u ∈ Sj , Pmax
v;u = Ii+Σt=max−1

t=i xitdt+Ij+Σt=max−1
t=j xjtdt+ymaxfmax,

where xit, x
j
t and ymax are real numbers denoting the fraction of the dt and fmax traveled in

each shell.

The upperbound on Pmax
v;u is obtained by taking the largest inter-edges to Smax and setting

i and j to 0 and xit, x
j
t and ymax to 1. Therefore Pmax

v;u ≤ 2Ihigh + 2Σt=max−1
t=0 dt + fmax.

Lower bound on paths not through Smax: For paths not through Smax, the path from v

to u can visit any of the shells, except Smax, multiple times. Moreover, we can com-

bine the paths traveled due to bridge vertices and other intra-edges to write PO
v;u =

Q+ Σt=max−1
t=0 ytgt.

Here Q is the number of inter-edges traversed, and yt ≥ 1 is a real number denoting the

distance traveled in each shell in terms of gt. If no intra-edges are travelled in shell St then

yt = 0 , otherwise yt ≥ 1.

Since a path from v, u passes through Smax, therefore at least one intra-edge will be in-

cluded in the path from v, u that does not pass through Smax. Thus at least one yt ≥ 1. Let

this be in shell Sx Let glow be the lowest gt among all St except for the innermost shell.

Therefore PO
v;u ≥ yxgx ≥ gx ≥ glow.

For the graph to be core connected Pmax
v;u ≤ PO

v;u. Using the upper and lower bounds of

the terms we see that this condition will be satisfied if 2Ihigh+2Σt=max−1
t=0 dt+fmax ≤ glow,

thus proving our earlier statement.

This constraint is however very strict as it encompasses the entire network, and thus in-

cludes vertex pairs with no paths through Smax, such as A and C in Figure 4.10. A less

strict, but equally effective, constraint for core connectedness can be obtained if we con-
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sider each pairs of components, instead of the complete shells. For vertices in two compo-

nentsCi andCj to maintain Pmax
v;u ≤ PO

v;u the following has to hold Imax,i+Σt=maxC−1
t=i dt+

Imax,j+Σt=maxC−1
t=j dt+f

i,j
max ≤ min(gi, gj). Here the parameters are defined in terms of the

components instead of the shells, maxC is the maximum number of components traversed,

and f i,jmax is the diameter of the subgraph induced by border vertices in Smax that connect

to vertices in Ci and Cj .

In Figure 4.10 we can see that the larger component of shell 2 maintains core connected-

ness as per the relaxed condition. Here I3,2 = 1, d2 = 0 for the larger component, f 2,2
3 = 0,

since for the larger component the only border vertex is S. Adding the terms we get the

left hand side as 2. The right hand side, smallest distance between two non-neighboring

vertices is also 2. By checking the shortest paths between the vertices in shell 2 we can see

that the core connectedness property is indeed maintained.

4.8 Summary of the chapter

To summarize, our key contributions are as follows:

• Propose a hypothesis that in many real world time-varying networks, a majority of

the highly central vertices reside in the innermost core of the network. Subsequently,

develop a set of novel heuristics to classify networks based on the extent to which the

highly central vertices are part of the innermost core. To perform the classification,

these heuristics do not require the explicit computation of the high centrality vertices

as the network varies over time.

• Develop an efficient algorithm to precisely predict the high betweenness and close-

ness centrality vertices. To the best of our knowledge, this is the first algorithm to

precisely predict the vertices and not simply the average centrality value of the ver-

tices in the network.

• Validate our results in practical application scenarios, namely message spreading and

increasing the diameter, to show that the effect of our predicted vertices is similar to

the actual ones. For networks, where our prediction accuracy is low, we show that
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even a random selection of vertices can produce same results as the actual high close-

ness/ betweenness centrality vertices. This indicates that for such networks, there are

no significantly high closeness/betweenness centrality vertices. Thus, in these cases,

prediction of high closeness/betweenness centrality vertices is of no practical use.

• Finally, we also outline a brief theoretical sketch demonstrating why our method

works.



Chapter 5

Learning representations
from core periphery structure

5.1 Introduction

The conventional paradigm of handcrafted feature engineering to generate node representa-

tions in networks has been largely overhauled due to the advances in techniques which au-

tomatically discover and map a node’s structural properties into a latent space. These tech-

niques are useful because manual feature engineering requires extensive domain knowledge

as well as tedious exploration of structural properties such as degree, centrality, clustering

coefficient etc. Without loss of generality, representation learning encompasses the task of

transforming a graph G(V,E) from V → I|V |×|V | to the mapping V → R|V |×d with the

constraint d << |V |.

97
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5.2 Core2vec: Learning node representations based on net-

work core information

In this section we first outline the limitations of the current random walk based techniques

and then outline our proposal.

5.2.1 Random walk based techniques

This problem is efficiently solved by applying a skip-gram model with negative sampling

[124], which is a celebrated technique for learning meaningful vector representations for

words. To represent a target word, nearby co-occurring words in the sentence are consid-

ered as context words. Adapting this framework for graphs, there have been several works

such as [139,167] which learn social representations of a graph’s vertices, by learning from

neighbor nodes generated from short random walks. These walk sequences act as proxy for

context words in a sentence. Apart from capturing local proximity, global information is

also captured [63] through generation of flexible contexts by parameterized random walks.

5.2.2 Limitations of random walk based techniques

One of the key drawbacks in these works is the assumption that the context nodes can be

always efficiently generated by walk sequences from a source node thus building a sam-

ple set appropriately representing the structural and the functional properties of the source

node. This perhaps is a fair assumption in social networks which are inherently assortative.

However, this might not be applicable for several classes of networks such as biological

(protein interaction), technological (router-router interaction), and semantic (e.g., Word-

net) networks which are disassortative.
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5.2.3 Our proposal

We propose a solution (see section 5.2.6) to the above problem by developing an algorith-

mic framework, core2vec which utilizes intermediate-scale structure of the network, i.e.,

the core periphery structure, for learning the feature representation of a node. A core-

periphery structure in its simplest form refers to a partition of a network into two groups of

nodes called core and periphery, where core nodes are densely interconnected (i.e., adja-

cent), and peripheral nodes are adjacent to the core nodes but not to other peripheral nodes.

Many techniques exist [12,144] which attempt to discover multiple nested cores in the net-

work. This partition of the network into nested cores of disjoint layers represent separate

structural/functional properties of nodes in the network.

We leverage this nested “onion like structure" in real world complex networks, to develop

a flexible biased random walk which seeks similar core nodes as context nodes for a source

vertex. More specifically we develop a strategy to guide a random walk sequence to identify

similar core nodes both in close proximity as well as distant neighborhood. We further de-

sign an objective function, which computes the average likelihood of predicting the source

node given the set of context nodes, which we obtain through our exploration procedure.

This objective function can be optimized efficiently using stochastic gradient descent and

consequently leads us to our optimal set of feature vectors. Core information for a node

can be computed efficiently in O(|E|) [12] and nodes with similar core ids have equiva-

lent connectivity profiles over the entire network. We perform experiments with real world

networks to analyze the performance of our scheme (see section 5.2.8). These experiments

show that our scheme brings nodes with similar core ids closer (closeness) as well as sep-

arates nodes with different core ids (separability) farther in the vector space compared to

state-of-the-art methods like node2vec [63], DeepWalk [139] and LINE [167], thus estab-

lishing the necessity of our approach.

5.2.4 Objective function

We exploit the idea of a skip-gram model with negative sampling, which is popular for lan-

guage modeling, in the context of graphs. Given a set of vertices Cv our task is to maximize
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P (Cv|v) where Cv comprises the context vertices of v.

To complete our objective we formulate the optimization problem as

f
max

=
∑
v∈V

P (Cv|v) =
∑
v∈V

∏
Cvi∈Cv

P (Cvi |v) (5.1)

where Cvi is a context node belonging to the context set of v. P (Cvi |v) can be computed as

P (Cvi |v) =
exp(vw.Cwvi)∑
v∈V exp(vw.Cwvi)

(5.2)

Here vw,Cw
vi

denotes the vector representation of the node v and context node Cvi . Since

this formulation is difficult to optimize directly we introduce negative sampling analogous

to word2vec [124].

5.2.5 Context nodes

We generate context nodes for each individual source node by performing L random walks

of fixed walk length (l)1 with the source node as the starting vertex. Similar core nodes can

sometimes be adjacent to the source node or they can be separated by multiple hops. Hence

in our exploration strategy we assume roles of both forms of extreme sampling strategies –

the breath-first sampling as well as the depth-first sampling [63].

5.2.6 Methodology

Consider a random surfer which has started from node i and is currently at node j, where

it is not necessary that (i, j) ∈ E. The decision for the next destination (k) for the random

walk given that (j, k) ∈ E is given by pi,j,k =
πijk∗wjk

Z
where πijk denotes the unnormalized

transition probability, Z is the normalization constant and wj,k is the weight of edge (j, k).

wj,k is 1 in case the graph is unweighted. The unnormalized transition probability for our

approach is given below.

1In our experiments we have set l = 40 and L = 10.
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πi,j,k =



1
(|ci−cj |+1)∗D∗λ (j, k) ∈ E, i = k;

1 (j, k) ∈ E, i 6= k;

1
(|ci−cj |+1)∗D∗γ (j, k) ∈ E, i 6= k, (k, i) /∈ E

0, otherwise

Here pi,j,k is the probability of the random surfer starting from vertex i, currently at vertex

j to transition to vertex k. cj, ck signifies the core id for vertex j, k respectively. λ and γ can

be tuned for the purpose of exploring in the close neighborhood of the source node or tra-

verse distant neighborhood of the source node. The pseudocode for core2vec is presented

in Algorithm 4.

Hence λ refers to the propensity to sample from near nodes from the source vertex. γ refers

to the propensity to sample distant nodes from the source vertex. D is the penalty parameter

which penalizes a random jump of large core difference. We add 1 to the core difference

to eliminate the chance of getting 0, in such cases where neighbors belong to the same

core. The pseudocode for core2vec is presented in Algorithm 4. In procedure kCore (see

Algorithm 5) we demonstrate the standard k − core decomposition algorithm [12] which

partitions the nodes in the graph into disjoint sets of cores. We utilize this core based parti-

tion along with hyperparameters γ, λ,D to obtain the probability transition matrix P using

the formulation we described earlier in this section. For all nodes in the network we obtain

a neighborhood set using the genWalks (see Algorithm 6) procedure. This neighborhood

set we finally feed into the SGD module for optimization and generation of the features.

Algorithm 4: Procedure: LearnFeatures
Input: G = (V,E,W ), dimensions d, walks per

node L, walk length l, context size c, exploration parameters λ, γ, penalty parameter D, probability transition matrix P
core_dict← kCore(G) ;1
P ← PreprocessProb(G,λ, γ,D, core_dict) ;2
G′ ← (V,E,P) ;3
for all nodes u ∈ V do4

walks to empty ;5
walks← genWalks(G′, u, l, L) ;6

f ← SGD(c, d, walks) ;7
return f ;8
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Algorithm 5: Procedure: kCore
Input: Graph , G(V,E)

Output: C[K],K = |V |
k ← 1 ;1
while |V |≥ 0 do2

while true do3
remove all vertices with degree ≤ k ;4
until all remaining vertices have degree ≥ k ;5
∀ vertex (v) removed , C[v]← k ;6

k ← k + 1 ;7

return (C);8

Algorithm 6: Procedure: genWalks
Input: G′(V,E,P), start node (u), walk length (l), total walk (L)

Output: walk

walk ← u ;1
walks ← {} ;2
for num_walks = 1 to L do3

for walk_iter = 1 to l do4
curr = walk[−1] ;5
Ncurr ← Neigbours_set(curr,G) ;6
s← Sample(Ncurr,P) ;7
walk ← s ;8

walks← walk;9

return walks10

5.2.7 Dataset

Network data used for experiments

We use two very well-known network datasets – Les Miserables (Lemis) and Jazz mu-
sicians (Jazz) as benchmarks to carry out our experiments to show the efficacy of our

approach.

Les Miserables (Lemis): This has been taken from [95].

Jazz musicians (Jazz): This dataset has been collected by Gleiser et. al [61].
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Figure 5.1: A snapshot of a few words obtained from the SWOW word association
network.

Dataset for validation

Training data: We use the English word association data collected from the two notable

crowd-sourcing efforts – (i) University of South Florida word association project (USF) and

(ii) small world of word project (SWOW)2. In each case, a group of participants were given

a cue word and asked to report the first few words that come to their mind in response to

the cue. According to cognitive theories [140, 165] the cue word acts as a stimulus and the

responses map how pairs of words are associated in a participant’s brain. Hence word asso-

ciations reveal mental representations of lexicons which are often not captured from textual

input because natural language follows predefined syntax. Normative forms of words were

reported by each project. Details about the data can be obtained from [43, 131].

• USF: In this project 300 participants where each given 60 cue words and asked to

produce two related words for each cue word in the order of primary association and

secondary association. Word network constructed from this graph contains 10590

unique words and 63788 word pairs (i.e., edges) with an average degree of 12.02.

• SWOW: In this project data was collected from 85, 496 participants, where each par-

ticipant was given 15–20 cue words and asked to report three responses as primary

association, secondary association and tertiary association. The word network con-

2http://www.smallworldofwords.com/new/visualize/
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structed from this dataset comprises 39, 026 unique words and 400622 word pairs

(i.e., edges) with average degree of 20.53. A representative snapshot of a small part

of this network is shown in Figure 5.1.

Test data: We use three datasets from where we obtain the ground-truth similarity between

word pairs. These are: (i) Mturk-771 [67], (ii) WordSim353 [53] and (iii) SimLex-999 [74].

Mturk-771 and WordSim353 score words on both similarity as well as relatedness. How-

ever SimLex-999 scores words only on the basis of high semantic similarity.

• The Mturk-771: This is a collection of 771 English word pairs along with human-

assigned relatedness judgement [67].

• WordSim353: WordSim353 is a collection of 353 word pairs whose similarity is as-

sessed and scored by 29 volunteers. This data has been collected by [53].

• SimLex-999: This dataset measures similarity, rather than relatedness of 999 word

pairs [76].

Hence words such as “coffee", “cup" will have lower scores in SimLex-999 compared to

the others because even though they are used in the same context, their meanings are very

dissimilar.

5.2.8 Experiments

We establish the necessity of our approach based on the following two metrics – (i) close-

ness and (ii) separability.

Closeness (C)

This metric estimates the cohesiveness of a core’s nodes around its centroid (i.e., the mean

of all the vectors corresponding to the nodes within a core). Closeness is calculated as the

average of cosine similarities of all nodes in a core with that of the core’s centroid. The

higher the value of closeness the more compact the core is.
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Separability (S)

Separability determines the overall separation among the different distinct cores. This is

calculated as the average Euclidean distance between pairwise core centroids. The higher

the value of separability the more well-separated the cores are.

The different methods are compared in Table 5.1. The closeness and separability increases

by tuning the penalty parameter (D) and in both networks we obtain better scores compared

to different naïve random walk approaches like node2vec, DeepWalk and LINE.

5.2.9 Need for core2vec

We conduct experiments on two benchmark real world graphs Lemis and Jazz (see sec-

tion 5.2.7). For both the networks we run the core2vec algorithm which learns node rep-

resentations in latent dimensions. We further transform the embedding onto the 2D plane

using PCA. We report the 2D plots of the embeddings obtained in Figures 5.2 and 5.3.

Each color denotes nodes of a particular core number. The objective here is to get nodes of

a core to form dense and well-separated clusters.

Table 5.1: The values of C,S for different methods. In case of core2vec, D = 3.5,
λ = 0.35 and γ = 2.5.

Algorithm Les Miserables network Jazz musicians’ network

core2vec 0.124,0.414 0.543,0.404

node2vec 0.097, 0.357 0.422, 0.276

DeepWalk 0.076, 0.311 0.317, 0.239

LINE 0.085, 0.345 0.329, 0.255
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Results with no core information

The topmost panel in Figure 5.2 shows the results obtained for the Jazz network by set-

ting the core difference |ci − cj| to 0 and D = 1. This essentially converts the resulting

exploration strategy to a biased random walk similar to node2vec [63]. Our results show

that using such walks without core information does not bring similar core nodes together.

This observation is also valid for the Lemis network as is evident from the topmost panel

in Figure 5.3.

Results with core information in place

Incorporating the core information however results in similar embeddings for similar core

nodes (see the last three panels of Figures 5.2 and 5.3). The closeness and separability

increases by tuning the penalty parameter (D) and in both networks we obtain better scores

compared to different naïve random walk approaches like node2vec, DeepWalk and LINE.

The different methods are compared in Table 5.1. However, note that if one keeps increas-

ing D the closeness and separability does not keep indefinitely increasing. The best values

of closeness and separability are obtained using core2vec for D = 3.5 thus showing its su-

periority over the other methods in obtaining core based embeddings. In both the networks

we set λ = 0.35 and γ = 2.5. For further discussion on selection of the hyperparameters

see section 5.2.12.

Figure 5.2: Jazz network with increasing D and core separation. Figures, left to right in
that order, were generated with D values of 1, 1.5, 3.5, 4.5 respectively.
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Figure 5.3: Les Miserables network with increasing D and core separation. Figures, left
to right in that order, were generated with D values of 1, 1.5, 2.5, 3.5 respectively.

5.2.10 Validation

Word association networks

Linguists and cognitive psychologists report [13, 43, 76] that by the time children are 4

years old they hear approximately 10 to 50 million words which only increases manifold

as their age progresses. The ability of humans to learn and recall such massive informa-

tion is through associations. This claim is supported by the finding that word pairs that

are semantically associated but mean different things, such as “sky", “blue" or “banana",

“yellow" activate the same regions of the human brain. Networks constructed from senti-

mentally aligned words which have similar associations or relatedness, have dense cores

of highly connected words also known as kernel lexicons [33, 82] linked with a relatively

sparse periphery.

Outline of the validation framework

We hypothesize that for word association networks with well-defined core-periphery struc-

tures, the embeddings obtained from core2vec should be more representative than the state-

of-the-art methods like node2vec, DeepWalk and LINE.

In order to establish the above hypothesis we first obtain embeddings of nodes for each of

the two word association networks introduced in section 5.2.7. We obtain the embeddings

using core2vec as well as the other baselines – node2vec, DeepWalk and LINE.



108 Chapter 5 Learning representations from core periphery structure

Next we consider three ground-truth datasets – SimLex-999, WordSim-353 and Mturk-771

that contain a set of word pairs and their similarity/relatedness scores. We rank these word

pairs based on these scores. In parallel, we obtain the similarities of exactly these word

pairs by estimating the cosine similarities of their corresponding embeddings obtained from

the word association networks. We again rank these word pairs based on these cosine sim-

ilarities. Finally, we estimate the Spearman’s rank correlation coefficient between the two

rankings (one from the ground-truth similarities and the other from the embedding similar-

ities).

5.2.11 Results

The key results for the two different association networks - SWOW and USF – are shown in

Tables 5.2 and 5.3 respectively. The correlation values in the tables indicate that core2vec

outperforms all the baselines. The p values are further noted to demonstrate that our ob-

servations are significant. Depending from where the ground-truth similarities are drawn,

in some cases we even obtain an improvement as high as 46%. An interesting point is that

the best benefit of core2vec is obtained when the ground-truth similarities are drawn from

the SimLex dataset. This shows that core2vec is able to better capture strong semantic

similarities in comparison to mere relatedness.

To further understand our results, we plot in Figure 5.4, the embeddings learned by node2vec

(top panel) and core2vec (bottom panel) for the same set of words projected on a 2D plane

(using PCA). Figure 5.4 clearly shows that words with similar meanings or words which

usually have more similar contexts are noticeably clustered better in case of core2vec.

5.2.12 Hyperparameters

Our framework has three hyper-parameters – λ, γ and D. Low values of λ will restrict ex-

ploration strategy preferentially within close proximity. Low values of γ will result the ran-

dom walk sample neighbors from distant hops. The penalty parameterD penalizes random

walks of high core difference. After extensive experimentation we observe that the hyper-
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Figure 5.4: core2vec brings semantically similar words closer in the vector space. The
values of D, λ and γ are 3.5, 0.3 and 3 respectively.

Table 5.2: Results (Spearman’s correlation coefficient, p value of significance) for SWOW
word association network. The values of D, λ and γ are 3.5, 0.3 and 3 respectively.

Algorithm SimLex WordSim353 Amazon MTurk

core2vec 0.548,3.34e−79 0.654,2.49e−42 0.692,1.33e−109

node2vec 0.467, 2.00e−55 0.640, 3.72e−40 0.664, 3.05e−98

DeepWalk 0.444, 9.80e−50 0.639, 5.86e−40 0.653, 3.49e−94

LINE 0.449, 9.53e−51 0.635, 2.14e−39 0.571, 3.01e−67

parameter values that work best for a network is dependent on the structure of the network

being considered. However, increasing D does not indefinitely increase closeness and sep-

arability. A systematic grid search allows us to identify the best choice for each network.

Further, note that higher values of the walk length (l) and number of walks (L) usually yield

better results. Higher values of walk length and number of walks increases the overall sam-

pling budget for learning representations [63, 139]. Random walks over graphs are proxy

for context size in sentences. It has been shown by Mikolov et. al. [123], in their work

on generating word2vec that increasing context size helps in getting richer representations.

Since core2vec utilizes the same framework, we speculate that increasing sampling budget

can yield better results. However this comes at the expense of computational budget and



110 Chapter 5 Learning representations from core periphery structure

Table 5.3: Results (Spearman’s correlation coefficient, p value of significance) for USF
word association network. The values of D, λ and γ are 3.5, 0.3 and 3 respectively.

Algorithm SimLex WordSim353 Amazon MTurk

core2vec 0.425,2.11e−39 0.476,5.29e−32 0.621,1.33e−52

node2vec 0.136, 2.00e−15 0.439, 4.52e−30 0.593, 7.35e−48

DeepWalk 0.116, 9.80e−20 0.429, 2.66e−25 0.604, 1.79e−48

LINE 0.111, 9.53e−12 0.424, 5.94e−24 0.598, 9.26e−47

we get diminishing returns.

5.2.13 Scaling experiments

Here we attempt to empirically test how well our model scales with respect to the number

of nodes in the graph. We note that the theoretical time complexity of the kCore procedure

is linear in the number of edges (i.e., O|E|) which would make the overall complexity of

our model at least O|V 2|. However, since most large graphs under study are sparse our

algorithm completes in sub-quadratic time in practice.

We consider 6 Erdős-Rényi random networks. Probability of edge formation is set to d̂
N

where d̂ is the average degree and is set to 30. N is the number of nodes which varies

assuming values like 10, 100, 300, 1000, 3000, 30000. Note that the logarithms of these

numbers increase from 1 to 4.5 linearly. We record the logarithm of the time taken by our

algorithm to run with these networks as inputs and plot the result in Figure 5.5. The plot is

close to linear with slope one indicating that the time taken by core2vec is mostly linear in

the number of nodes.
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Figure 5.5: Logarithm of the time taken by core2vec vs log10|V |.

5.2.14 Discussion

The main difference between core2vec and existing approaches is that the latter approaches

are agnostic to the inherent network hierarchy. Core2vec is however explicitly conditioned

on the organization of the nodes in the network. More specifically the random walk deci-

sions taken at each step in core2vec is conditioned on the core membership of the current

node and its neighbor. Hence neighborhood multiset is not likely to contain members with

very large core distance from the starting node. This approach is based on the assumption

that similar core nodes have more in common compared to distant core nodes. We specu-

late that core2vec will work well in networks which have hierarchical structure. It should

work comparatively with baselines in case of networks without hierarchies such as regular

networks because without core based guidance it would eventually resort to bfs/dfs based

exploration for collecting neighborhood.

5.3 Detecting high central nodes

In this section, we present a network representation learning driven approach for detecting

influential nodes in the network. While the steps presented in section 3.4 can locate in-

fluential nodes, i.e., high closeness and betweenness nodes in the network, in practice, the

process of community identification followed by clique percolation is very expensive and

does not scale with the size of the graph3.

A more feasible method would be to apply distant supervision, where a machine learning

3Specifically, the clique percolation algorithm takes an exorbitantly large amount of time for all those

communities that embed large size cliques.
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model is trained on auxiliary tasks based on noisy labels that can be generated by some

heuristic driven domain knowledge. Once the model is trained on automatically generated

noisy labelled data, it is applied in target task where labelled data is difficult to obtain. Such

approaches have shown promising results in natural language processing domain especially

in tasks such as relation extraction [125], sentiment classification [155] and machine trans-

lation [154].

We express the task of influential node discovery as a semi-supervised learning problem, as

follows. Consider a graphGwith V vertices,E edges withX being a |V ×d| feature matrix

such that vi → Rd. Let node labels, here “influential” or “not influential”, be available for

a subset of nodes, the goal is to predict the labels for the rest of the nodes.

To do this classification, we leverage a variant of graph convolution networks (GCN) [91]

. The choice of GCN is motivated by its recent success in solving various graph problems

e.g., node classification. As we shall see, this novel technique not only leads to a reason-

ably good selection of important nodes but also scales well with an almost 11x speedup

over the traditional method.

5.3.1 Motivating GCN based approach

It can be argued based on the experimental results in Table 3.3, we can simply use the top-k

high (based on degree) core vertices and use them as proxy for high central nodes. Note

from our observation in section 3.4, that high central nodes are spread out in the original

network, but connected in the core of the meta second order network. This immediately

disqualifies taking the top-k core nodes, since most of them are unlikely to be clustered

together at the inner core.

Approximate algorithms for finding centrality are generally based on sampling a few select

nodes and then finding the shortest path from these nodes [8, 22, 57, 113, 130]. However,

unlike the GCN approach that recursively attempts to find the best nodes by observing

the neighbors, neighbors of neighbors etc. of the training data points, the approximate

centrality finding approach only considers a few shortest paths and ignores the long-range

relationships in a network.
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Primer to GCN: Here is a short overview of GCNs. The node representation after a single

layer of GCN is defined as

H = f
(
D̃−

1
2 ÃD̃−

1
2 )XW

)
(5.3)

W ∈ Rd×d are the model parameters, Ã = A + I where A is the adjacency matrix and

D̃ii =
∑

j (A+ I)ij . f is an activation function, here we used ReLU, f (x) = max (0, x).

Equation 5.3, for each vertex, and with bias included, is expressed as;

hv = f

 ∑
u∈N (v)

Whu + b

 , ∀v ∈ V. (5.4)

Here, b ∈ Rd denotes bias, N (v) corresponds to immediate neighbors of v in graph G

including v itself and hv is the obtained representation of node v. Multi-hop dependencies

between nodes can be computed using multiple GCN layers. The representation of node v

after kth layer is given as

hk+1
v = f

 ∑
u∈N (v)

(
W khku + bk

) ,∀v ∈ V. (5.5)

where,W k, bk are the layer specific parameters of GCN.

5.3.2 Modification of vanilla GCN

The available model of GCN assumes that the adjacency matrix encodes the similarity

between two nodes, i.e., two nodes are connected if they have overlap in latent character-

istics. However, for our problem, adjacency matrix entries may contain a large percentage

of edges which do not fulfill this homophily criteria. However in our case, the similarity

is based on vertices being in the same shell (i.e., having the same core number), which is

a stricter condition than adjacency. Though this is not true for all networks, yet we pro-

pose that dense structure within the inner core can act as label data which can be used by

a learning algorithm to discover other possible high central nodes in the network. One of

the drawbacks in learning algorithms like GCN is that it inherently assumes that the ad-
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jacency matrix encodes the similarity between two nodes, i.e., two nodes are connected if

they have close functions. To address this issue, we modify the equation 5.3 to equation 5.6

by element wise multiplication with the matrix C where cij = 1 if the absolute difference

between the shell numbers of node vi, vj ≤ |∆|. This operation acts as a mask, eliminating

edges which connects distant shells and increases sparsity of the network. Sparsity has

been shown to improve GCN in multiclass classification [3]; however, to the best of our

knowledge this is the first application of core based graph sparsification for substructure

discovery.

H = f
(
D̃−

1
2

(
Ã� C

)
D̃−

1
2 )XW

)
(5.6)

5.3.3 Network suite

All the real world networks used in our experiments are available publicly at [2, 101, 146].

Networks N1-N4 were generated using the synthetic network generator Musketeer [65]. A

summary of the properties are noted in Table 5.4.

5.3.4 Train and test setup

To train the GCN, we first compute the core numbers of the nodes in the original network.

The complexity of this operation is O (|E|). Nodes in the innermost cores are the best and

most easily obtainable proxies to an initial set of seeds needed to train the GCN. We use

a random set of vertices sampled from within the innermost core as the positive training

labels. Equal number of negative examples are selected randomly from the outer shells.

The remaining unlabelled nodes are labeled during the training phase. The total labelled

data is 20% of the total number of nodes, similar to that used in [91].

We divide the remaining 80% nodes into 10% validation set and 90% test set. We calculate

X using scalable embedding technique node2vec [63]. We use Adam [90] for optimization

with learning rate of 0.01 and weight decay of 0.0001. We use a three layer convolution

network with the final embedding dimension size of 200. Input dimension size is 512 fol-
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Network Nodes Edges α µ(dv) µ(ClC) LCN

as1 4333 7948 1.251 4.024 0.227 11

as2 6474 12572 1.235 4.292 0.252 12

caida 26475 53381 1.164 4.032 0.208 22

bio 7393 25569 1.991 6.917 0.011 11

power 4941 6594 2.844 2.669 0.0801 5

sw 994 4645 1.168 9.32 0.34 11

astro 18772 198050 1.842 21.106 0.630 56

condmat 23133 93439 2.237 8.083 0.633 25

hepph 34546 420877 2.053 24.368 0.289 30

hepth 27770 352285 1.775 25.375 0.313 37

cora 23166 89157 2.147 7.697 0.265 13

ytube 13723 76765 1.826 11.187 0.136 25

enron 35692 183831 1.544 10.02 0.496 43

N1 67292 284931 1.944 9.02 0.384 53

N2 54292 196782 1.32 13.9 0.356 39

N3 87392 453734 2.114 4.2 0.296 47

N4 25382 153831 1.844 6.2 0.386 43

Table 5.4: Test suite of networks and their properties. α: power-law exponent, µ(dv):
average degree, µ(ClC): average clustering co-efficient, (LCN): largest core number in
the network. The contents in the parenthesis indicate the abbreviations we shall use for the
network names in the rest of the chapter.

lowed by the hidden units of size 400, 300 and 200 respectively. The core difference value

of |∆|= 6 worked well through tuning of the validation set. The last hidden layer of the

GCN provides a probability of the positive/negative labels for each node. We prepare a

rank list of the nodes based on the highest positive confidence values.
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5.3.5 Ground-truth nodes

To evaluate our results we compare the rank list obtained from the GCN with the actual

seeds across the (scattered) rich clubs. To prepare a list of such ground-truth seeds we ran-

domly sample a set of k nodes from the cliques in the innermost core of the meta network

as found in section 3.4. We select the seeds such that all the cliques are well represented.

We rank the k nodes based on their degree within their respective cliques. All the nodes

in the same clique will have the same degree, thus the same rank position. Nodes from

different cliques may have different degrees. We prepare multiple such randomly sampled

ground-truth rank lists of seeds.

Results: We use AP@k measure to evaluate the performance of vertex recommendation,

which measures the rank accuracy of the recommended vertex list [134]. As shown in sec-

tion 3.7.1, larger rich clubs lead to more resilience. Seeds from larger rich clubs (or cliques

representing them) will have larger degree and thus higher rank.

We set k = 20, and compare the rank lists obtained from the GCN and the ground-truth

seeds. A case is said to be a match at a particular position of the rank list if the node

predicted by the GCN at that position matches directly with the ground-truth seed at that

position or to a neighbor of that seed, that belongs to its clique.

The results for AP@20 for two different ground-truth rank list of seeds (SetA, SetB) are

given in Table 5.54. The results are representative and are similar across other sets of

ground-truth rank lists (evident from the low standard deviation over the different sets).

Our masked variant of GCN is significantly better in discovering seed nodes when com-

pared against GCN in [91] for most of the networks. The induced subgraph of the seed and

its neighbors is then used to construct the (scattered) rich clubs.

We also compare the time to predict seed nodes using GCN versus explicitly computing the

high centrality nodes in Table 5.6. As can be seen, the time for prediction is substantially

lower. This result is representative and holds for all the other networks.

4We also experimented with AP@5, 10 and 15 which showed similar trends
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Network
Kipf GCN Masked GCN

SetA SetB SetA SetB

as1 0.41± 0.01 0.32± 0.01 0.64± 0.01 0.94± 0.01

as2 0.24± 0.01 0.29± 0.01 0.94± 0.01 0.90± 0.01

caida 0.24± 0.02 0.63± 0.01 0.8± 0.01 0.88± 0.01

bio 0.46± 0.05 0.64± 0.01 0.85± 0.01 0.89± 0.01

enron 0.63± 0.01 0.48± 0.02 0.42± 0.02 0.88± 0.01

sw 0.1± 0.01 0.26± 0.08 0.73± 0.05 0.92± 0.01

N1 0.23± 0.01 0.19± 0.05 0.33± 0.01 0.36± 0.02

N2 0.48± 0.01 0.42± 0.02 0.63± 0.02 0.82± 0.01

astro 0.35± 0.05 0.45± 0.05 0.6± 0.01 0.67± 0.01

condmat 0.2± 0.03 0.43± 0.1 0.76± 0.08 0.88± 0.02

cora 0.4± 0.02 0.45± 0.1 0.78± 0.02 0.96± 0.01

hepph 0.24± 0.09 0.28± 0.01 0.7± 0.05 0.9± 0.05

hepth 0.5± 0.04 0.4± 0.03 0.6± 0.09 0.86± 0.04

ytube 0.4± 0.02 0.65± 0.03 0.85± 0.05 0.95± 0.05

pow 0.31± 0.1 0.46± 0.08 0.33± 0.1 0.52± 0.05

N3 0.1± 0.01 0.1± 0.01 0.83± 0.02 0.65± 0.02

N4 0.15± 0.01 0.1± 0.01 0.54± 0.02 0.73± 0.02

Table 5.5: AP@20 for the prediction of seed vertices for different networks. Lower
(Higher) scores in each method are highlighted.

Network Time (secs) Time (secs) Improvement

Direct centrality (T) GCN method Ratio (T/GCN)

enron 15487 3929 3.9

condmat 14540 1676 8.6

astro 17890 1588 11.2

hepth 14967 1310 11.42

hepph 35696 2134 16.72

ytube 2400 257 9.33

Table 5.6: Comparison of time to find high centrality vertices. Evaluation was done on
a workstation desktop running 64bit bit Debian GNU/Linux 9.5 with Intel Xeon CPU E5-
2620v3 (2.40 Ghz) and 32GB RAM. Both the algorithms have been executed sequentially
and no GPU unit has been used for the GCN model to keep the comparison fair.

5.4 Summary of the chapter

To summarize, our key contributions are as follows:

• We develop a word2vec inspired skip-gram based framework for learning rich vector

representation of nodes in graph data. We propose a random walk based exploration
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strategy with added network structure based constraint which guides nodes to ob-

tain similar neighborhood. To the best of our knowledge this is the first work which

utilize the onion layered network hierarchy for random walk design.

• We propose two metrics, i.e., closeness and separability through which we show

that our scheme brings nodes with similar core ids closer and distances nodes with

different core ids farther in the vector space compared to state-of-the-art methods.

• We compare our algorithmic framework against competing methods on downstream

word similarity task and obtain significant improvement in performance (atmost 46%

in certain cases).

• We further adopt semi supervised distant learning on graph data and propose an ap-

proach to identify path based influential nodes in graph data leveraging core periph-

ery structure.



Chapter 6

Conclusion and Future Work

In this chapter, we summarize the main contributions of the thesis and take a stock of our

achievements vis-a-vis the objectives set up in the introductory chapter. Finally, we wrap

up by pointing out some of the possible future directions of research that have been opened

up by this thesis.

6.1 Summary of Contribution

In this thesis our primary objective has been to study distinguishing properties of k-core

subgraph in several real world networks and develop applications based on such charac-

teristics. To accomplish these goals, we have studied k-core subgraph in both static and

dynamic setting across a host of real world networks. We also developed a novel network

representation approach which capitalizes on the ordered partition of the graph into differ-

ent levels obtained by k-core decomposition. On of the key findings in this thesis is that

k-core subgraphs can be considered as a important tool for extracting top path based cen-

tral nodes in the network without any explicit centrality computation. A detailed summary

of our contributions are listed below.
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6.1.1 Implications of central node localization in graph degeneracy

In the first chapter, we showed through data driven approaches that k-core subgraph acts as

a container for major path based central nodes in some real world networks. For this group

of networks we showed topological signatures which discriminates them from a group of

networks where path based central nodes do not occur in k-core subgraph. To the best of our

knowledge, this is the first comprehensive work which seeks to investigate utility of k-core

subgraph in discovering central nodes and show how their location in some networks led

to higher resilience as well as candidates for information propagation. The contributions of

this work can be summarized as below.

• We show that in some networks a large fraction of high central (closeness, between-

ness) nodes are located in the innermost k-core subgraph. We calculate the Jaccard

coefficient between set of innermost k-core nodes and equal number of top central

nodes. We find the Jaccard coefficient for closeness to be∼ 0.86 and for betweenness

to be ∼ 0.8. However in the second class of networks we find Jaccard coefficient to

be ∼ 0.05 for both centrality metrics. We term the k-core subgraph in the first class

of networks as rich centrality clubs.

• We show that not all networks have clique like graph degeneracy. We discover a class

of networks where a set of nodes in graph degeneracy are part of multiple communi-

ties. Specifically, we find group of networks where high core nodes are distributed in

several network communities. Due to such organization they play prominent role in

information propagation in the network. However we also find a group of networks

where high core nodes are located in at most two communities.

• We show that second eigenvalue of the normalised Laplacian, calculated from the

shell volume of a network serves as an excellent metric in discriminating networks

into two categories. In the first group inner shells increasingly act as bottleneck as

we move inwards. This causes multiple shortest paths in the network to lie through

the k-core subgraph.

• We develop novel network perturbation models and show how centrality resilience

is impacted due these processes. Our results show that networks with rich centrality
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clubs are robust to random perturbations. However they show increased vulnerability

in case of targeted attacks.

• Finally we show that subgraphs with high central nodes can be discovered by ex-

ploring second order connectivity in the network. To the best of our belief this is

the first work which explores utility of k-core decomposition in extracting rich cen-

trality clubs. For networks such as protein, facebook where top 20 closeness and

betweenness nodes are not present in the innermost k-core, we find that constructing

meta-network and applying k-core decomposition on the derived network helps in

extracting 95% of the top 20 central nodes in the original network.

6.1.2 Prediction of central nodes in dynamic networks

One of the key problems in temporal graphs is understanding whether influential nodes in

the current timepoint retain their importance in future state of the network. In this chapter

we focus on answering this question by leveraging k-core structure in evolving graphs. We

propose novel heuristics based on the network structure, which are designed to estimate, to

what extent path based central nodes in the current timepoint retain their strategic position

in the network in future. Besides feature engineering contribution, we show utility of time

series models such as ARIMA, ARMA, MA in predicting actual high central nodes in the

network. In summary, the major contributions of our work are listed as follows:

• We develop a two-step algorithm for predicting the high centrality vertices for dy-

namic networks. Initially, we estimate the overlap between the set of high centrality

vertices of the current time step to the set of high centrality vertices of the future time

step. Toward this goal we employ sophisticated time series models such as ARIMA

and show that this approach results in low mean percentage error. In the next step,

assuming that the network snapshot is already available in time, we analyze its inner-

most core to find the ids of the high centrality vertices.

• A key contribution of our work is that we develop a set of novel heuristics to classify

networks based on the extent to which the highly central vertices are in the innermost

core. Our heuristics do not require the explicit computation of the centrality values.
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We also separately report our predictions for each class of networks. We empirically

demonstrate that the higher the number of high centrality vertices in the inner core,

the higher is the accuracy with which we can predict these vertices for future time

steps. For real networks that maintain this property to the largest extent, our F1-score

for prediction is 0.81 for closeness and 0.72 for betweenness. Similarly, for synthetic

networks that maintain this property to best extent, the F1-score for prediction is

0.94 for closeness and 0.92 for betweenness.

• In addition to F1-scores, we further validate our results by comparing how the pre-

dicted and actual high centrality vertices perform in a practical context. For high

closeness centrality vertices, we compare the time to spread a message when the

high centrality vertices are taken as seeds, and for the high betweenness centrality

vertices, we compare how the length of the diameter increases as the high between-

ness centrality vertices are deleted from the network. For these experiments we select

a set of random vertices as control, and compare the performance of the actual high

centrality vertices and the predicted high centrality vertices. For networks where we

could predict the results with high accuracy, the effect of the original and predicted

vertices are very similar, and these results are markedly different from the effect of

the randomly selected vertices.

6.1.3 Representation learning using core periphery structure

This chapter unfolds two novel approaches of network representation learning which is

supported by k-core structure of the network. Unsupervised network representation learn-

ing borrows many of its key techniques from skip-gram based word representation devel-

oped for natural language processing domain. Supervised network representation learning

emerged from advances in computer vision domains. However both these methods have

found significant adoption among network mining practitioners because they lend scalable

methods for automatic generation of features for individual nodes. The major contributions

in this chapter are summarized below

• We design a novel network embedding model core2vec, with a unique exploration

strategy for context nodes guided by global information. Our technique does not
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require any compute intensive meta information like community label or domain

specific node level attributes.

• We demonstrate that our model can favorably map similar core nodes closer in space

and distant core nodes farther in space.

• We illustrate an application of our embedding in word analogy task, where compare

similar words scored by our method against manually curated gold standard scores.

Our method can capture similar words better from the baseline techniques.

• We propose a novel semi-supervised learning approach for ranking influential nodes

based on core-periphery structure.

6.2 Future direction

In this final section, we outline a few out of several possible directions of future research

that have been opened up by this thesis.

• This thesis shows comprehensively how nodes in the k-core subgraph can be used

as influential spreaders of information. There exist series of works which connect

information propagation with influence maximisation. Influence maximisation prob-

lem revolves around finding a small subset of nodes which can be used as initial seed

set to initiate information dissemination in the network for optimal spreading. It has

been shown in [86] that for well defined diffusion processes such as independent

cascade model and linear threshold model, optimal seed set extraction methods are

NP-hard and approximate algorithms need to be applied. A possible direction could

be how prior knowledge of network structure obtained by k-core decomposition helps

is improving the theoretical bound of the best possible set.

• Spectral analysis of networks has been shown in this thesis as a potential approach

to discriminate networks based on connectivity profiles. This has been shown to

identify networks where path based central nodes can be located without explicit

computation. However such analysis is difficult to perform on very large graphs be-

cause eigenvalue computation on large matrices is expensive. However there has



124 Chapter 6 Conclusion and Future Work

been some recent work such as Benson et. al. [48] which may alleviate such compu-

tational hurdles on large graphs.

• Our prediction framework in the second contributory chapter raises further scope of

detecting anomalous users, hateful content propagators in microblogging platforms

such as Twitter, Gab. It has been shown by Mathew et. al. [118, 119] that incite-

ful and derogatory content propagators often lie in strategic information pathways in

the respective platforms and hence automatic detection using our method could be

helpful for platform governance.

• In the final contributory chapter, we developed network embedding approaches lever-

aging k-core organisation. We showed novel application in word association graphs,

where our approach obtains better representation for semantically similar words. Dis-

tributed representation of words learned from large scale corpus has helped in solving

several challenging natural language processing task. These representations can be

further improved by incorporating distributional thesaurus network which has been

successfully shown by Jana et. al [83]. These developments create opportunity to ap-

ply core2vec on distributional thesaurus network and compare these representations

with other similar approaches.
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